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Manifolds

Introduction

Composition of mappings. Let f : A — B, g : C' — D. Define

gof:f'(C)— D,
go f(a) = g(f(a)).

Diffeomorphism. f : U C R" — V C R™ is called a diffeomorphism if U, V" are open, f is bijective and
foftec™.

Local coordinate. Let M # &, U openin R, p : U — M injective. Then ¢ is called a local coordinate on M.
If ¢ is also onto, then we call ¢ a global coordinate. Let ¥ be another local coordinate on M. Then ¢ and v are
compatible if (pfl o 1) is a diffeomorphism.

Definition: Manifold. Let M # @, n € N*, ) : Uy, C R" — M are local coordinates on M, A € A, satisfying
(i) M = U,cp Rgpy, (i) VA, 1 € A, ) and ¢, are compatible.
We say D = {p, : A € A} is a diffeomorphic structure on M and (M, D) is a n-dimensional smooth manifold.

Topology on a manifold. 2 C M is open if Vip € D, ¢ () open in R™. Then T = {Q open in M} is a
topology on M.



Assumption. (i) 7 is a Hausdorff topology on M,
(i) Jpr € D,k =1,2,---suchthat M = ;. , Rgpy,.

Smooth maps on manifolds. Suppose (M, D), (N, Dyr) are manifolds, f : M — N is continuous. For ¢ €
D, ¥ € Dy, L o f o is acoordinate expression of f.
f is smooth if every coordinate expresion of f is smoth. In this case, we write f € C'*™ (M,./\/)

Diffeomorphism on manifolds. f : M — A\ is called a diffeomorphism if f is bijective and f, f’l are smooth.
We say M and A are diffeomorphic.

Homeomorphism -4 diffeomorphism: Milnor's 7-dimensional sphere.
Maximal diffeomorphic structure. Suppose (M, D) be a n-dim manifold. Write

D = {¢ n-dim local coordinate on M : ¢ compatible with each 1) € D}.
Then D is also a diffeomorphic structure on M and (M, D), (M, D) are diffeomorphic.

Open submanifold. Let (M, D) be a manifold, 2 # & open in M. Write
Dq = {(p‘@_l(ﬂ) NS D}.
Then (€2, Dq ) is a manifold. We call {2 is an open submanifold of M.

Local smoothness. Suppose M, N are manifolds, f : M — N.
Let Q C M open. We say f is smooth in §2 if f|Q : Q — N is smooth.
Let p € M. We say f is smooth at p if 3 a neighborhood U of p such that f smooth in U.

Theorem: Partition of Unity. Let M be a connected manifold, O an open cover of M.

Then Jpy € C§°(M;[0,1]), A € A such that

(i) {oa : A € A} is local finite, i.e. Vo € M, 3 neighborhood V of  and A, - -+ , Ay € A such that supppy N
V=o,VA\#N,i=1,---,N.

(i) VA € A,V € O, suppp) C V.

(iii) Y yep 2 = Lon M.

Corollary: Existence of cut-off function. Let p € M, U neighborhood of p. Then J¢ € C§°(M; [0, 1]) such
that (i) suppy C U, (i) ¢ = 1 near p.

Example: linear space. n-dim linear space X = span{vy }7_,
Global coordinate: ¢ : R — X, p(z) = zlv;,z = (xt,--- ,z").

Example: graph of a smooth function. f : { C R" — R™ smooth, {2 open. Define
graphf = {(z, f(z)) : z € Q} C R™"".
Global coordinate: ¢ : 2 — graphf, z — (z, f(z)).

Example: n-sphere. 5" = {z € R""! : |z| = 1}.
Local coordinate: ¢; : By := {z € R" : |z < 1} — S", with

‘:Of(a:) = (xlf" axkilaj: 1- |x|2’xk+l7"' ’xn),

wherek =1,--- ,n+ 1.



Example: projective space. P, = {l C R"*1 : [ is a one-dim linear subspace}. Local coordinate: @y, :
R™ — P, with

(,Ok(-’IT) = R($1, e 7$k_17 laxka e 7a,:n),

wherek =1,--- ,n+ 1.

Y

xF=1

Example: product manifold. M™, '™ are manifolds. For, ¢ € D, € Dy, define
¢ X 1 : Domyp x Domy) - M x N, (z,y) — (¢(x),¥(y))
and
Dy =@ X : @ € Drg,tp € Dpg )

Then (M X N, Dprxnr) is a (m + m)-dim manifold.

Tangent Space

Suppose M be a n-dim smooth manifold.

Linear mapping and linear functional. For linear spaces X and Y, denote the space of all linear mappings from

XtoYby Z(X;Y),and Z(X) = Z(X;R).
Space C,°. For p € M, define

C,° = {f : 3neighborhood U of ps.t. f € C*°(U)}.
For f,g € C,°,regard f = g if f = gnearp. Fora, B € R, f,g € C}°, define

(af + Bg)(z) = af(z) + Bg(z), (f9)(z) = f(z)g(z),
where z € Dom f M Domg. Then C;° is a linear space.
Smooth curve on manifold M.y € C*((a,b); M), —00 < a < b < 0.

Definition: tangent. -y a smooth curve on M with y(t9) = p. Define 7/ (ty) € £ (C;°) by

(' (to), ) = % o for fear

v (to) is called the tangent of -y at ¢o.



Definition: tangent space and tangent vector. The tangent space of M at p is
T,M = {+'(ty) : v curve on M, y(to) = p}-

v E Tp./\/l is called a tangent vector.
Remark.p # ¢ — T,MNT,M = 2.

Theorem. T, M is a n-d linear space, where n = dimM. Given a local coordinate ¢ with ¢(z() = p. Then a
basis of T, M is

0
oxt

p - dt ’t:O

o(zo + te;).

Moreover, for a curve y on M with y(¢y) = p, write

1 -1

Y =(ploy), i=1---,n.

i !/
Then 7' (to) = (v'(t0)) 52 p-

Proof. Firstly we show that v/ (to) = (7* (to)),% o+ Indeed, for f € CF,

(| 1= 5 Fowtoo+te) = A28 ay),
Then
(01 00) ] £ = () 2L (1)
= %L_tof op(yh 57"
= 2| rer=trtw .

Hence 7/ (to) = (713 (to))'% ‘p. From this indentity, we immediately get 7, M is a linear space spanned by
{2 ‘p}?:l- Finally we show that {52 ‘p}?:l are linearly independent. If for some a1, - -+, € R, iz |p =
0, then

i 0 gy i) o _ i 0a! e
(a %‘p7(<ﬁ )J>—O¢T($o)—a 3xi($o)—0‘j—0-

Thusa; = -+ = a,, = 0, and {% ‘p}?zl are linearly independent.

Propostion: properties of tangent vectors. Let f,g € C)°,v,w € TyM, o, 3 € R.
(i) f = g near plimplies (v, f) = (v, g).

(i) (v, af + Bg) = a(v, f) + B(v,9)-

(iii) (ow + Bw, f) = a(v, f) + Blw, f).

(iv) <U7 fg> = f(p)(v,g> + g(p)<U’ f>

Drivetive on a linear space. Let X be a n-d linear space, {2 openin X, p € . Define L : X — T,,Q) by

d
L(v) = T tzo(p—i—tv), veX.

Then L is a linear isomorphism from X \to T},€2. In this sense, we regard T, = X and v = % ’t:O (p + tv).



Proof. Let E1, - - - , B, be abasis of X, p(z) = 2! E; withz = (21, -+ ,2,) € R™. Then

L(W'E;) = " tzo(p+tviE’Z-)
_ % » (¢ (p + tv' E:))’ % )
= % ) +tole;)’ %
B % t=0 ((cp_l(p)) —i—tvj) 88J
vj% ,

Differentiation

Definition: differentiation on manifolds. For f € C*°(M;N') and p € M, define df, : Ty, M — Ty N by

d

dfp(v) = dt ity

f °%, CAS TPM7
where 7y is a curve on M such that y(t9) = p, 7' (to) =

Coordinate expression of differentiation. Let ¢ = ¢(z) € Dy with p = @(z0), ¥ = 1 (y) € Dy with
F®@)=vw), f=¢ tofopandy’ = (p ! oy). Then

d d 0
@t_tofov:&\t_t (W' oforVasl,
0
:a‘t ij(77 )a j ()
—(7)' (¢ ) ( 0) o ay] o

Proposition: properties of differentiation. Let f,g € C*°(M;N),v,w € T,M,, 8 € R,h € C®(N;P).
(i) f =gnearp = df, =dg,.

(i) df, (v + Bw) = adf,(v) + Bdf,(w).

(iii) d(h o f)p = dhf(p) o dfp

Proof. (i)(ii) are obvious.
(iii) For curve y on M with y(¢g) = p,7'(to) = v, we have

d

d(ho f)p(v) = —

R (f o) = dhsy) ((f o) (to)) = dhyg) (df,(v)).

Useful formulas.

(i) Let I be the indentity map on M. Then d(In), = Iz, M,Vp € M.
(i) Let f € C®(M). Thendf,(v) = (v, f),Vv € T, M.

(iii) Let -y be a curve on M. Then dry, (1) = 7' (to)-

Proof. (i) d(Im), ('7 (to)) = dt‘t toIM v = dt|t 0 = '(t)-
(if) dfp( ( )) = a ‘t:tof 7= (v f>
(i) dryeg (1) = G, ¥t + to) = ¥ (to)-



Tangent Bundle

Definition: tangent bundle. Given a n-d manifold (M, D). Write

TM= | J T,M.
pPEM
Set
A .0
D={¢:peD}, ¢(z,v)= Uzc‘)xi (p(x),:zz,v € R™.

Then (T'M, D) is a 2n-d manifold, which called the tangent bundle of M.
Definition: smooth vector field. X € C'°(M; T M) is called a smooth vetor field if
X(p) €e T,M, Vpe M.

Let ¢ = () be a local coordinate on an open set {2 in M. Write

0 0 d
- Q=T | = —
ort B St oxily dt ‘tO

(e ' (p) + te;).

Then a% is a smooth vector field on (. {% }:L is a basis vetor field.

=1
Proof. The coordinate expression of X is

¢ 1o aii op(z) = (z,e) € C™.

Thus 8%; € C* (N T,Q).

Proposition: components of a vector field. Let X : M — T, X (p) € T, M. Define X :Q = Ry

X (p) ZXi(p)% ,

, pefl

Then X is a vector field if and only if X* € C*(Q),i = 1,--- ,n.
Proof. Since
ploX op(x) = (a:,(Xi ocp)ei) = (:t:,X1 op, -, X" o),
X is a vector field <= each X° o ¢ smooth <= each X' smooth.
Proposition. 72 = {2 x R™ (with coordinate ¢ = ¢(x)).

Proof. Define a one-to-one mapping ¥ : T2 —  x R"™ by

i a
v (U Ozt

V(M) = {X : X smooth vector field on M}.

> - (p’Ul"" ,,Un).
p

Product of a smooth function and a vector field. Let f, g € C°(M), X,Y € V(M). Define

(fX +9Y)(p) = f(p)X, +9(p)Y,, pe M.



Then smoothness of components of X, Y implies fX + gY € V(M). Hence V(M) is a C*-module.

Action of a vector field on a smooth function. For X € V(M), f € C*(M), define X f by

(XF)(p) = (Xp, f)y pEM,
Then X f € C®(M).
If X = Xi%, then X f = Xi%;,where E)anl = % ol
Product of two vector fields. Let X, Y € V(M). Define XY : C*(M) — C*°(M) by
(XY)(f) = X(Yf), [feC*M).
Then XY is a linear differential operator of 2-order. The commutator of X, Y is XY — Y X.
Proposition: Lie bracket. Let X, Y € V(M). Then there exists a unique vector field [ X, Y| € V(M) such that
(X,Y]f=(XY -YX)f, VfecC®M).

We call [ X, Y] the Lie bracket of X and Y.

0
oxt )

Coordinate expression of Lie bracket. Let X = X' %, Yy =Y! then

QY 0XI\ 0
oxt oxt

[X,Y] = (X —Y 7

Proof.

0 (L OF\ D (. 0f
_xi % (yi2l ) _yi % 975
X, Y]f =X oz’ <Y aa:j) Y oz’ (X aw‘)
(Y Of | iy 9P
- (X oz 07 XY Bzidai
OX3 Of . f
B (Y Ox! @+YX O0xi0xi

Y7 _ J
_ XZaY, _YlaX- (9f'.
oz’ ox* ) 0x?

Proposition: properties of Lie bracket. Let X, Y, Z € V(M),a, B € R.
(i) [X’ Y] = _[Y7 X]

(i) [@X + BY, Z] = a[X, Z]
(i) [[X, Y], Z2] + [[Y, Z], X]

+ ﬂ[Y, Z].

+ [[Z, X],Y] = 0 (Jacobi's indentity).
Proof. (i)(ii) are obvious.

(iii) Write ng' = X,X3i+1 == Y, X3i_|_2 == Z,l € Z. Then



2

Z[[ka Xpi1]y Xiyo]
k=0

2
= [ X X1 — Xpa1 X, X
pa
2

= Z (X Xir1 Xpv2 — Xy X X1 — X1 X Xiro + X2 Xpo1 Xi)
k=0

2 2 2 2
= Z X X1 Xkro — Z XpXk2Xk-1 — Z X1 Xk Xko + Z X1 XpXp-1
k=0 k=0 k=0 k=0

2 2 2 2

=) XiXpp1 Xnp2 — Y XeXe1 Xz — Y Xen XeXeso + Y X1 X Xy
k=0 k=0 k=0 k=0

=0.

Definition: diffeomorphism. Let F' : M — N be a diffeomorphism. Define dF" : V(M) — V(N) by

dF (X)(F(p)) = dF,(X(p)), X € V(M),p € M.

dF Xia = (X'o F1)dF 0
oz = (Xre k) ozt )’

Proposition. dF'([X,Y]) = [dF(X),dF(Y)].

Proof. For g € C*°(M; N),
(dF([X,Y]),9) =([X,Y],go F)

Y __0Xi\ @
—((xZ _vZ2 ) 2 R
<< oz’ 8xl)8m3’go >
Yi _.axI B )
<(<X os " 8w>F )dF<awj)’g>'

9 : oY
Jo -1y — -1
dF(an(Y oF )= oF

we get(dF'([X,Y]),g) = ([dF(X),dF(Y)], g).

Since

Riemannian Manifolds

Bilinear Forms

Definition: bilinear form. Let B : V(M) x V(M) — C®°(M). If

B(fX +gY,Z) = fB(X,Z) + ¢B(Y, Z),
B(X,fY +g9Z) = fB(X,Y) +g9(X, Z)

forany f,g € C*°(M), X,Y,Z € V(M), then we call B a bilinear form.



Proposition. Let F' : V(M) — C*° (M) satisfying
F(fX+gY)=fF(X)+gF(Y), f,geC*M),X,Y cVM).
Forp € M, if X, =Y, then F(X)(p) = F(Y)(p)-

Proof. Choose a cut-off function { € C*° (M) such that {(p) = 1 and supp{ C Rgy, where p = ¢(z) is a
local coordinate near p. For X = X2y = Y* az nearp, X, =Y, = X'(p) = Y(p), Vi, which implies

2
FEOW) = FEX0) = F (X ) 0)
~(XWF (¢ ) ) = X OIF (¢ ) 0)

Y @)F (Con ) ) = F(Y)()

Hence F'(X)(p) = F(Y)(p).

Corollary. Let B : V(M) x V(M) — C*®(M) be a bilinear formon M, p € M, X, X, Y, Y € V(M). If
X(p) = X(p),Y(p) = Y (p), then B(X,Y)(p) = B(X,Y)(p)-

Pointwise definition of a bilinear form. Let B be a bilinear form on M,p € M, u,v € T, M. Define
B(u,v) := B(X,Y)(p),

where X,Y € V(M), X(p) = u, Y (p) = v. From the previous corollary, we know B(u, v) is well-defined. Then
B :T,M x T, M — Ris a biliear operator on T,, M.

Local definition of a bilinear form. Let 2 open in M, XY € V(). Define B : V(2) x V() — C*(Q2) by
B(X,Y)(p) = B(X,,Y;), peQ.
Then B is a bilinear form on 2.

Proof. First we verify that B(X,Y’) € C'* (). Itis sufficient to verify B(X,Y") smooth near p. Choose a cut-off
function { € C*° (M) such that { = 1 near p and supp¢ C §2. Then

B(X,Y) = B((X,(Y) near p.

Hence B(X, Y) is smooth near p. Moreover, since B is a bilinear operator on Tp/\/l for each p, it is easy to see
that B is bilinear on V().

Components of a bilinear form. Let () be a coordinate neighborhood with coordinate ¢ = @(x). Write

0 0
Bi'::B —y T~ y .’.:1,-.., .
g (axz 8x3) bJ "

Bi;; is a component of B, since

9 v _yid — B(X,Y)=X'Y'B;.

X=X ol

Let g be a bilinear form on M. g is called symmetric if

g(u,v) =g(v,u), Vpe M,u,veT,M.



g is called positive if

g(u,u) > 0,Vp € M,Vu € T,(M),
and g(u,u) =0 < u=0.

Definition of Riemannian manifolds

Definition: Riemannian manifold. Let g be a symmetric positive bilinear form on M. Then g is called a
Riemannian metric on M and (M, g) is a called a Riemannian manifold.

Proposition. Every smooth manifold has a Riemannian metric.

Proof. Let {(}; }7° ; be a partition of unity with open cover {€2; }2° ;, where €2}, is a coordinate neighborhood with
coordinate . Define a bilinear form g, on {2 by

a(X,Y) = (X' -Y"?, X,Y € V().

Define a bilinear form g on M by

(0.¢]

g(X,Y) :ng(CanCkY)a X’YEV(M)

k=1

Then g is obviously symmetric and nonnegative. If g(X,Y") = 0, then gx({x X, (4 Y') = 0 for each k. Hence
(X = (Y foreach k = X =Y. Hence g is Riemannian metric on M.

Let (M, g) be a Riemannian manifold. Then g is a linear product on T},(M) for each p € M. Write

lu| := g(u, u)%, u € TH(M),

o 0 .
gl]:g %7% ) Z7.7:17"'n'

Then (gij)nxn is a symmetric positive-definite matrix-valued smooth function.

and

Definition: smooth and pointwise smooth curve. Let vy : [a,b] — M. «y is a smooth curve on M if y = 7 ‘[

forsome ¥ € C*°((a — ,b+€); M), e > 0.
Lety : [a,b] — M be continuous. -y is called a pointwise smooth curve on M is there exists a partition

a,b|

a=qy<a; <---<any=2»b

such that'y‘ la ai1] is smooth, 2 =1, - - - ,N.

Definition: length of a curve. Let 7y : [a, b] — M be pointwise smooth. Define the length of vy by

b
L(y) = L(; [a,b]) = / (1) dt.

Suppose M be connected.
Definition: metric on a Riemannian manifold. Let p, g € M. Define

d(p,q) = inf{L(7y) : v pointwise smooth from p to ¢}.



Then d is a metric on M.

Proof. We need to show that d(p, q) > 0 forp # q. Let~y : [a,b] — M with y(a) = p,y(b) = q. Let ¢ :
By — M be a coordinate such that ¢! (p) = 0,q & Rgyp. Choose ¢ € (a, b) such that

v(c) € (0B1), (t) € v(B1),Vt € [a,c).

Write oc = 7’[ac} anda! = (ptoa),,i=1,---,n.Then

2 OF =@ O50]

=(a')'(t) (o) (t)gsj (e(t))
>Mi(a@®)l((@), -, (@")) ()] > o,

where A; : Rgy — R is the smallest eigenvalue of (g;; )nxn, Which has a posive infimum cZ on p(B1). Then

L) 2 L) = [ 1 (0)]dt > (e~ aeo

Hence d(p, q) > (¢ — a)co > 0.

Integration on a Riemannian Manifold

Integration on a coordinate neighborhood. Let () be a coordinate neighborhood €2 with coordinate (o = <p(x)
Set

Co(Q) :={f € C(R) : suppf compact in Q}

and

1

V(Q) = (det(gi; (P))nxn)?

where Q = {t'-2; . 0<t <1,i=1,---,n}. Define

ozt

()= [ (Fo0)@etlgnn? o

The integral I (f) is independent of the coordinate ¢ = ¢(z).

Proof. Suppose there is another coordinate 1) = 1(y) on §2. Write

- o 0
gkl:g(a_yk’a_gﬂ)’ k,l=1,---,n.

Since

0 _3(¢_1)k 0
ort Ozt Oyr’

we have

_ oW oY)
9ij = G I Gkl s

t,7=1,--- ,n.



Hence
(9:) = V@& ) @)V ™),
where V(¢ 1) = (a(w—_l)l) = V(@ top)op ! Thus
(det(g;))? = [detV ()| (det(gi)) -

Then by computation, we get

l/ (f 0 ) (det(Gu))? 0
41(0)
:/—1(9)(f 0 p)(det(du))? © pldetV (¥ o )

:/ (f ©9) (det(gij)rn) ? 0 0.
(V)

Integral of continuous functions with compact support. Suppose f € Cy(M). Then there exist &, -+ , &y €
N

C§°(M; [0, 1]) and coordinate neighborhood €2, - - - , Q such that suppé; C Q;,Viand > & = 1 onsuppf.
i=1

Define

I(f) = me (&f)-

It is easy to see that I( f) is independent of the choose of &; and €2;.

Integral of general functions on M. Since I : Cy(M) — R is a non-negative linear functional, by Riesz
Representation Theorem, there exists a unique regular Borel measure V' (called the volume measure) such that

I(f) = /M fdv, Vfe Cy(M).

Connections

Affine Connections

Definition: Affine connections. Let M be a smooth manifold. D : V(M) x V(M) — V(M) such that for
Vf,g € C®(M),X,Y,Z € V(M), we have

()Dx(Y + Z) =DxY + Dx Z,

(i) Dx (fY) = (Xf)Y + fDxY,

(iii) DwayZ = fDXZ + g.DyZ.

Then we call D an affine connection on M.

Proposition. Every manifold has affine connections.

Proof. Choose a partition of unity {Ck }z‘;l, each supp( contained in a coordinate neighborhood €2j,. Let ¢}, =
o1 () be a coordinate on §2y,. Define D* : V(1) x V() — V() by



DEY () = (X(0), V') (0), P € QXY € V().

Then Dy, is an affine connection on Q. Define D : V(M) x V(M) — V(M) by

DxY =) DY(4Y), X,Y € V(M).

k=1

Then D is an affine connection on M.

Proposition. Let X, X, Y, Y € V(M),p € M.
) X(p) = X(p) = DxY(p) =D3Y(p).
(i)Y =Y nearp = DxY(p) = DY (p).

According to the proposition, we can define D on V(Q) where {2 is an open subset of M by
D,X :=DyX(p), VeXecVM),V(p)=uv,veTN.
Then D : T,Q x V(2) — T,€2. And we have

D,(aX + BY) = aD,X + BD,Y,

D,(fX) = (v, /)X (p) + f(p) Du X
Dav+ﬁwX =aD,X + IBDU)X7

forVo, 8 € R,v,w € T,Q, X, Y € V(Q), f € C*(Q).
We can also define D : V() x V(Q) — V() by

DxY(p) := Dxp)Y, p€Q.
Then D is an affine connection on 2.

For a local coordinate ¢ = (), write

0 g O ..
D%%_ ij%7 173_17""71
We call I‘k the connection coefficients. For X = X2 Fir Y = Y7 %, we have
0 oY'* 0
DxY =X'Da (YI— X' X'yt :
* 5T < Oz’ > ( oz | ) ok

Thus the affine connection D is locally decided by its connection coefficients I‘fj.

Proposition. Let D be an affine connection on smooth manifold M, vy : (a,b) — M be a smooth surve such that
Y(to) =p € M, (ty) = v € T,(M). Then for X € V(M), D, X only depends on X o 7.

Proof.

0 0

DX = D,(X'5 ) = v(m%( p)+ X (p)Dy

d 7
_ato(X )8 g

(p) + X' oy(to)D aaz

Definition: vector field along a curve. Lety : (a,b) — M and X : (a,b) — T'M be smooth such that

X(t) S T,y(t)M, t e (a,b).



Then we call X a smooth vector field along the curve . Let V() be the set of all smooth vector fields along 7.

Examples. ()7 € V(7).

(i) X € YM) = XovyeV(y).

(i) f € C*(a,b),p € M,v € T,M, define X(t) = f(t)v,t € (a,b). Then X € V(v) with y(t) = p,t €
(a,b).

Proposition. Let D be an affine connection on a smooth manifold M and v : (a, b) — M be smooth. Then there
exists a unique operator 2 : V(7y) — V() satisfying

HZ(X+Y)=25+ 50 VXY € V(y).

(i) Z(fX)=fX+f5, Vf, eC((ab),X eV(y). )

(iii) If X € V() and there exists a smooth vector field X in a neighborhood of p = y(¢p) suchthat X oy = X

near tg, then %(to) =Dy X.

Remark. We often write % instead of I(Ji—f.

Proof. We will prove the proposition by computation.

aX _d (Xii_)
dt dt ox’
J .
— %8;; —l—Xj('yi)Tfja;Zk
(&) 4

where X = Xi%,v' = (v') 2

dat
o & d*F kdy dd\ 8
Examples. (i) # = (ﬁ_ + I‘Z_j_(;tL % s

(v e T,M,y(t) =p, X(t) = f(t)o = L& = f'v.

Riemannian Connection

For Riemannian manifold (M, g), we write (-, ) = g(-, ).

Definition: metric connection. Let D be an affine connection on a Riemannian manifold (M, g). D is called a
metric connection if

X(Y,Z)=(DxY,Z)+ (Y,DxZ), VX,Y,ZecVM).

Proposition. Let D be a metric connection.
() v((X,Y)) = (D,X,Y(p)) + (X (p), Dy(Y)) forv € T, M, X,Y smooth vector fields near p.
(ii) %(X,Y) = (%,Y) + (X, %}, forv : (a,b) — M smooth and X,Y € V(y).

Proof. (i) Choose smooth vector field V' near p such that V' (p) = v. Then



v((X,Y)) = V(X,Y)(p)
= (DvX,Y)(p) + (X, DvY)(p)
= <DvX7Y(p)> + <X(p)’Dv(Y)>

a0 o,

dt ‘Oxi’ Oxi
= (lmr ) ©
“at \\ozi 9z’ 77

0 0

— ,t Ty T .

I

0 0 0 0

<D’Y,8:L'i’6x]>+<8$i,D’y,a$j>

<d 0 0 > <5 d 0 >

dt Oz’ OxI Ozt dt Oz’

— 2ixy)

dt‘ '

dxX* . 0 0 dY’ o0 0 d 0 0
_ j i ivi

i o e T T e o) Y e
dxt o dY’s 0o d 0 d 0
_ 9 ar- o i@ 9 i% 9
<dt 833“Y>+<X’ dt 8:cj>+< dtami’y>+<XY dt8m7>

d d

—X,Y X,—Y).

Definition: symmetric connection. An affine connection DD on a smooth manifold M is called symmetric if
DxY —DyX = [X,Y], VX,Y eM,
which is locally equivalentto I'}; = T'% Vi, j,k = 1,--- ,n

Ji’

Definition: Riemannian connection. A symmetric metric connection D on a Riemannian manifold M is called
Riemannian connection.

Example. The Riemannian connection on S™ is
VxY(p) = T,(D;Y(p), X,Y €V(S"),

where X, Y € V(R"H1), X‘Sn =X, ?‘S" =Y,T,(z) =z — (z,p)p,z € R"" p € S™ be the orthogonal
projection from R™*! to T}, S"™.

Proof. For z € Ry € T, 5™, we have (Tpm,pr> = (Tpz,y) = (z,y). Then

X(Y,Z)=X(Y,Z)=(D3Y,Z)+(Y,D3 Z)
=(T(D3Y),Z2)+ (Y, T(D32)) = (VxY,Z) + (Y, VxZ).

(X(p),p) = (Y (p),p) =0, VpeS",
since X g =X€ V(S"),Y‘Sn =Y € V(S™). Then we claim that

T([X,Y]) = [X,Y].



For simplicity, we only prove the formula at p = e,,,1, when T, = span{(9 }4. We have T, (z) = = —

e, 1 = (z',---,2",0). Then X" (p) = Y"1 (p )— 0. Thus
_ o 5,0V S0X7\ @
T,(X,Y](p) = T, (Z (XZ 5~ ¥ g ) 87>
(9X7 0
_;<Xl dxi 0901')%
= [X,Y](p).

Finally, we get

VxY —-VyX =T(D;Y — D; X) =T([X,Y]) = [X,Y].

Theorem. The Riemanian connection exists uniquely, the connection coefficients of which are given by
T =Tymg™, 4,7,kc{l,---,n}
ij zg,mg ’ ' Iy ) ’ ’

where

1 8gim agjm 8gij .o
Fij,m:§<a$j + Ot _awm ) Z,j,mE{l,"',’n},

(gij)an = (gij);in’ gij = <%’ @% 1,] € {1a Tt 7n}'

Proof. The affine connection D given by ]."k =Tmg™ ¥ is obviously symmetric since ]."k = Fk Moreover,
X(Y,Z)
=X'9;(Y?9;,Z"0},)
=X (0,YIZ* +Y10,ZF) gy, + X'Y! Z"0; g5,
(DxY,Z)+(Y,DxZ)
=(X'0Y' + X'YT};) Z* gu, + (X' 0: 2" + X' Z'T%;) Y gu.

Hence

(DxY,Z) +(Y,DxZ) — X(Y,Z) = X'(YIZ¥ + Y*Z))TL gy, — X'V Z*0, 9.

! L _
Since I';;gi = T'ijmg™ gi. = LijmOmr = L'ijk, we have

(DxY,Z)+ (Y,Dx2) — X(Y, 2)
1

:EXinZk(Fij7k +Tyy) — XY/ Z*8,95,
1 .
:EX"YJ Z%(9;9ik + 0igii — Orgij + Orgij + Oigrj — 0;9i — 20,g;1.) = 0.

Thus the connection is exactly a Riemannian connection. Next, we will prove the uniqueness. We claim that if a

Riemannian connection D has coefficients Ff], then Fk =T, mg™ . Indeed,

0;Gim = 0j(0i,0m) = (Dy; 0;, Op) + (05, Do, Om),
8igjm - <D81 83" 8m> + <8j7D3i 8m>7
amgij = <D8mai’ 6j> + <81~, DBm 83')-



Thus
Tijn = (Dg;0j,0m) = Tijgm = Tijmg™ =Tj;.
Example. Let H = {(z,y) : z € R,y > 0}, g;;(z,y) = y 2d;;. Then

0:95; =0, 0ygi; = —2y 6.

Hence
F?j = _y71(5im + o + 0jm 2 — 5ij52m)5m = y71(5z'j52k — 09 — 5z'k52j)-
Thus
_ 0 -1 4+ (1 O
(Fllj) = ! (_1 0 ) ) (F?] =Y ' (0 _1> .
Geodesics

Some Preliminaries

Definition: vector fields along a surface. Let M be a manifold, f = f(s,t) € C*((a,b) x (¢,d); M) is called
a smooth surface on M. X = X (s,t) € C*((a,b) x (¢,d); T M) is called a smooth vector field along f is
X (s,t) € TysyM, Vs € (a,b),t € (c,d).

For a function F' = F'(s,t) : A x B — C, we write Fs(t) = F(s,t), F;(s) = F(s,t).

Set

of df, 9f dfi 8X dX, 09X dX,

ot  dt’ 98s ds’' Ot dt °  0Os ds
are vector fields along f.

. f _ 9%f
Proposition. 75 = 755

Proof. Write f' = (p ' o f)!, X = X'0;. Then

or _of . of of

_ 8 OF i
ds _(38 +F”85X)8k'

Hence

o of 02 f* L Oft Of7 o of
— = = + T — | O = ——.
Os Ot 0s0t 7 s Ot Ot Os

Remark. From the proof above, we see that in general X X
. P , 9 950t 7 91ds "

Definition: local diffeomorphism. Let M, N be two manifolds, F' € C*°(M;N). F'is a local diffeomorphism if
Vp € M, there exist a neighborhood U of p and V' of f(p) such that F' : U — V is a diffeomorphism\dots



Remark. F' € C*°(M;N) is a local diffeomorphism if and only if Vp € M, dF), is bijective.

Definition: Riemannian isometry. Let M, N be two Riemannian manifolds, F' € C*(M;/N) be a
diffeomorphism. F' is called a Riemannian isometry if

(dF,(u),dF,(v))y = (w,v)pm, Yu,v e T ,M,pe M. (%)

Definition: local Riemmanian isometry. Let F' € C*(M;N). F'is called a local Riemannian isometry if Vp €
M, there exist a neighborhood U of p and V' of F'(p) such that F' : U — V is a Riemannian isometry.

Remark. F' € C*°(M; N) is a local Riemannian isometry if F satisfies (*).
Example. F' : R — S!) F(t) = €% is a local Riemannian isometry.

Proposition. Let F' : M — A is a local Riemannian isometry. Then
(i) L(F(v)) = L(vy) for any curve y on M.
(i) dy (F (), F(q)) < dpm(pq), Vp,q € M.

Geodesic and Expotential Map

Definition: geodesic. Let 7y : (a, b) — M be a smooth curve. The geodesic equation is

d2
ey,
dt

which is locally equivalent to

vt g dy Ay

a Thitgr g =0 TRE Lo

We say a non-constant curve 7 is a geodesic if y satisfies the geodesic equation. If vy € C*°([a, b]; M) can be
extended to be a geodesic, we call -y a geodesic segment.

Proposition. Let 7y be a geodesic.
(i) a(t) = y(at + b) with a, b € R, a # 0 is also a geodesic.
(i) |[7'| = constant.

Proof. (i) Obviously. (ii) %|’y'|2 = %(7’,7') =2(y",v') =0.

Forv € TM,letI'(v,-) = I'(v, t) be the unique solution of

Let (ay, b, ) with —0o < a, < b, < 0o be the maximum domain of I'(v, -). Then
e C*(M), T(kv,t)=T(v,kt), YveTM,k,tcR,
where
Q={(v,t): v e TM,t € (ay,b,)}
is an open subset of T M x R.

Example. On the sphere 5", letp € S",v € T,,5™. Then



(v, t) = (cos |v|t)p + (sin\v|t)i.

0|

Definition: expotential map. Let D = {v € T M : 1 € (ay, by)} be open in T'M. Define

exp: D — M,exp(v) =I'(v,1).
Then exp € C*(D; M) is called expotential map. Moreover, I'(v, t) = exp(tv).
Let D, = D N T, M be a star-shaped neighborhood of 0, in T, M. Write

exp,(v) := exp(v), ve M.
Then d(exp,,), : Ty Dyp(= T,M) — Texpp(v)./\/l. Forv = 0,,

d(exp,)o, = I, M,

since d(exp, )o, (v) = %|0 exp,,(tv) = v.

Definition: geodesic neighborhood. By the inverse mapping theorem, there exists a neighborhood U of 0, such
that

exp, : U — exp,(U)
is a diffeomorphism. We call expp(U) a geodesic neighborhood of p. If in additon U = Bg(0,) C T, M, write
Bg(p) = exp,(Br(0,))
be the geodesic ball. For 7 € (0, R), we also write
S (p) := exp, (8B, (0y)),

and radial geodesic exp, (tv),0 < t < 1 with [v| = .
There also exists a neighborhood of p and § > 0 such that Vg € U,

exp, : B, (04) — exp, (Br(0g))

is a diffeomorphism satisfying U C B,.(0,). U is called total geodesic neighborhood.

Minimizing Properties
Gauss's Lemma. Let p € M, v € Dom(exp, ). Then
(d(exp,)y (v),d(exp, ), (w)) = (v,w), Vw € T,M.

Proof. Select a smmoth curve a : (—¢,€) — Dom(exp,) such that a(0) = v,a/(0) = w and write f(s,t) =
exp,,(ta(s)). Then

0 f = d(exp,)ia(s) (t/(5)),  0:f(s) = d(exp, )ta(s) ((s))-

Moreover,



8;(0sf, i f) =(Bus f,Ouf) + (85 £, O )

=(04f,0.f) = 50,005, 0.)

1 1

=3 (0:f,0: )|,y = §3s<04(3)70¢(3)>
—(a/(s), a(s))-

Hence

(0:£,0:f)(s,t) = ( (5), (s))2.

Taking s = 0, = 1, we get

(w,v) = (05 £(0,1),0:£(0,1)) = <d(expp)’0 (w), d(expp)v (v))-

Theorem. Let p € M, Bg(p) geodesic ball, v € Br(0,) \ {0,},q = exp,(v), @ : [0, 1] — M a piecewise

smooth curve such that a(0) = p, a(1) = q. Then
(i) L(ca) > |v].
(i) If L(a) = |v] and |@'| = constant, then a(t) = exp, (tv),t € [0, 1]. Hence |v| = d(p, q).

Proof. (i) Assume Rana C Br(p) and a(t) # p,Vt € (0,1]. Let 8 = exp;1 oa. Then 5(0) = 0,, (1) =
v, B(t) # 0,t € (0, 1]. Set

(8',8)

| BL = B, 5>ﬂ’ 5|,'|=5'—5i, |
a, = d(eXPp)ﬂ(ﬂL)’ Q= d(eXPp)B(ﬁH)-
Then
o =d| +af, (,q)=0
1

— [of] = (o2 + o 2)" > || = 81| = 18] (8, 8)] = |8l

— @)= [ Wlae> [ josla > [ aside= o
(i) Suppose L(cr) = |v|, |o/| = constant. Since [o| = [/, |, we have o = 0. Hence 8| = 0. Thus [8'| =

81| = lo'| = [v]. Hence | [ B'dt| = [ |8'|dt = |v]. wiite

1 -1 1 1
— / |B'|dt /ﬂ’dt:wrl/ Bdt.
0 0 0

/0 (18]~ (8, e)dt =0, |8]—(8,¢) > 0.

Then |e| = 1. Observe that

Hence |5'| = (f', e). By the Cauchy-Schwartz inequality, we get 8" || e, which implies 8’ = v, 8 = vt,a =
exp, B = exp,(vt).

Cororllary1. Let Br(p) be a geodesic ball, 0 < r < R,q € S,(p). Then d(p,q) = r.

Cororllary2. Br(p) = {x € M : d(z,p) < R}.



Proof. For ¢ € Br(p), we have g € S, (p) for some r € [0, R). Thus d(p,q) =7 < R.

Forqg € M\ Bg(p), given : [0,1] — M,~v(0) = p,v(1) = gandr € (0, R), there exists ¢ € [0, 1],
v(c) € S, (p). Then L(y) > L(+;[0,c]) > d(p,v(c)) = r. Letr — R, we get L(y) > R. Hence d(p, q) >
R.

Cororllary3. Let 7y : [a,b] — M be a non-constant piecewise smooth curve such that |y'| = constant, L(y) =
d(v(a),v(b)). Then v is a geodesic segment.
Proof. Choose a geodesic ball Bg(y(a)) and r € (0, R). Then there exists ¢ € (a,b), y(c) € S,(y(a)). Since

Tag
to a geodesic 7y ] (a—

satisfies the minimizing property, we get -y ‘ layc] is a geodesic segment, which means 'y|[a7c} can be extended

cate) Similarly we can extend 7 at v(b) to (b —€,b+¢€). Givent € (a,b), we also get y is a

geodesic in (t,t + €(t)) for some g(t) > 0. Then

[a,b] C (a—e,a+e)Ub—eb+e)U | (tt+e(t).
te(a,b)

Hence -y is a geodesic segment.

Hopf-Rinow Theorem

Theorem. Let p € M. Assume Dom(exp,,) = T, M. Then for each ¢ € M, d(p, q) = 7 > 0, there exists v €
T, M, |v| = 1 such that g = exp,(rv).

Proof. Choose By, (p) such that g & Bs. (p). Then there exists m € S; (p) satisfying

d(m,q) = xeigf(p) d(z,q).

Then m = exp,,(ev) for some v € T, M, |v| = 1. Set y(t) = exp,(tv),t € R.
We claim that € + d(m, q) = d(p, q). Indeed, for & : [0,1] — M, a(0) = p, a(1) = g, we have a(s) € S.(p)
for some s € (0, 1). Then

L(a) = L(e; [0, 5]) + L(; [s,1]) = € + d(m, q).

Hence d(p, q) > € + d(m, q). The "<" inequality is obvious.
Set

T={tel0,r]:t+d(y(t),q) =d(p,q)}.

We have € € T' # . Let ty = sup T and assume that ty < 7. By definition, tg € T'. Write p’ = v(¢o).
Repeating the procedure above, we get some ¢’ > 0, m’ € S/ (p) such that

d(m',q) = inf d(z,q),

zeS (p')

andv' € Ty M, [v'| =1, m' = exp, (¢'V'), &' +d(m’,q) = d(p', q).
Write

< (1) = exp, (tv), t € 0,1t],
- / /
exp, ((t —to)v'), t € (to,to +¢€'].

Then



e +d(m',q) =d(p',q),to +d(p',q) = d(p,q)
—to+e +d(m',q) =d(p,q)
= L(7) = d(p, q) — d(m’',q) < d(p,m’)
= L(¥) = d(p,m).

By Corollary 3, 7 is a geodesic segment, since |y| = 1. We getm’ = y(to + &') and to + &' € T, which is a
controdiction.
Thus =supT € T, and r = d(p,q) = r + d(y(r), q). Whence y(r) = q.

Hopf-Rinow Theoren. Let p € M. Then the following are equivalent.

() Dom(exp,) = T, M.

(i) Each bounded closed subset of M is compact.

(iii) M is a complete metric space.

(iv) Vg € M, Dom(exp,) = T, M. (geodesically complete)

Moreover, each of (i)-(iv) implies

M VYaq1,q2 € M, q1 # g2, there exists some minimizing geodesic segement from ¢, to gs.

Proof. (i) = (ii). Since every bounded closed set is contained in some closed ball centered at p, it is sufficient to
show that B (p) = {z € M : d(z,p) < R} is compact for each R > 0. Choose ¢ € Bg(p),d(p,q) =1 <
R. By the previous theorem, we can find some v € T, M, |v| = 1,exp,(rv) = ¢q. Then g € expp(ER(Op)).
Hence Br(p) C exp,(Br(0p)). Taking the closure, we get Br(p) C exp,,(Br(0,)) which is homeomorphic to

a closed ball in R™. Since a closed subset of a compact set is compact, we get B (p) is compact.
(ii) == (iii). Obviously.
(i) = (iv). Let v : (a,b) — M solve the ODE

,y// — 0
v (0) =v e TM,|v| =1

We need to verify that a = —00, b = 0o. Assume that b < co. Then V{¢t;} C (a,b),t; — b, {~y(¢;)} is a Cauchy
sequence since

d(v(t:),v(t;)) < [t — t5], Vi, 5.
Then ~y(t;) converges to some m € M. Thus
v(t) > mast — b .
Define
7(b) := lim ~(t) = m.

Then 7y : (a, b] — M is continuous. Choose a totally geodesic neighborhood (U, 7) of y(b). Then for some & >
0,v([b — €,b]) C U. Since U is a totally geodesic neighborhood, U C B,.(y(b — €)). There exists a unique
gedesic « joint 'y(b - 6) and 'y(b). Then a extends -, which implies b = co. Similiarly we can prove a = —o0.
(iv) == (i)(v). Obviously.

Curvature

3
Definition: curvature tensor. Let M be a Riemannian manifold. Define R : (V(M)) — V(M) by



R(X,Y,Z)= DyDxZ — DxDyZ + Dixy|Z.
Then R is a 4-tensor. We call R the curvature tensor of M. R is C'*°-linear, since

R(fX,Y,Z) = DyD¢xZ — DyxDy Z + Diyx v Z

=Dy(fDxZ)— fDxDyZ + Dy¢ixy|—~v)x Z

= (Yf)DxZ + fDyDxZ — fDxDyZ + fDixy|Z — (Y f)DxZ

=fDyDxZ — fDxDyZ + fDixy|Z = fR(X,Y,Z),
R(X,Y,fZ)=DyDx(fZ) — DxDy(fZ) + Dixy|(fZ)

=Dy(Xf)Z+ fDxZ) - Dx((Yf)Z+ fDvZ) + ([ X,Y]f)Z + fDix v|Z

=YXf)Z+(Xf)DyZ+ (Yf)DxZ + fDyDxZ

—(XYf)Z - (Yf)DxZ — (Xf)DyZ — fDxDyZ + ([X,Y|f)Z + fDix y| Z
— fDyDxZ — fDxDyZ + fDixy Z = fR(X,Y, Z).

We also write
R(X,Y,Z,W)=(R(X,Y,Z),W) € C*°(M)
and
R(X,Y) = DyDx — DxDy + Dixy] : V(M) = V(M).
Moreover,
R(0;,0;) = Dy; Dy, — Dy, Do, -

Theorem.

HWR(X,Y,Z,W)=—-R(Y,X,Z,W).

(i) R(X,Y,Z,W)=—-R(X,Y,W,Z).

(i R(X,Y,Z)+ R(Z,X,Y)+ R(Y,Z,X) =0.
vy R(X,Y,Z,W)=R(Z,W,X,Y).

Proof. (i) Obviously.
(ii) Observe that

R(X,Y,Z,Z) =(DyDxZ, Z) — (DxDyZ, Z) + (Dx yZ, Z)
1
=3YX(2,2) ~ (DxZ, Dy 2)
1
- §XY<Z, Z)+ (DyZ,DxZ)
1

+31X,Y)(2,2) =0,

Thus

0=R(X,Y,Z+W,Z+W)
—R(X,Y,Z,Z)+R(X,Y,Z,W)+R(X,Y,W,Z)+ R(X,Y,W,W)
—=R(X,Y,Z,W) +R(X,Y,W,Z).

(iif)



D(X,Y,Z)+D(Z,X,Y)+D(Y,Z,X)
=DyDxZ — DxDyZ + DixyZ

+DxDzY — DzDxY + Dz x|Y

+DzDyX — DyDyX + Dy 5 X
=Dy (X, Z] + Dx[Z,Y) + D;[Y,X] — Dy x)Z — Dix )Y — Dz X
—[Y,[X, Z]] + [X,[2,Y]] + [Z,]Y, X]] = 0.

R(Z,W,X,Y) = — R(W,X,Z,Y) — R(X,Z,W,Y)
=R(W,X,Y,Z) —I—R(X,Z,Y, W)
:—R(X,Y,W,Z) —R(Y,W,X,Z) —R(Z,Y,X,W) —R(Y,X,Z,W)
:2R(X,Y,Z,W)+R(Y,W, Z,X) +R(Z,Y,W,X)
:2R(X,Y,Z, W) —R(W,Z,Y,X)
:2R(X,Y,Z,W) —R(Z,W,X,Y).
Notation: For F' : (V(./\/l))4 — V(M), write
O'F(X,Y, Z, W) = F(X,Y, Z, W) + F(Y, Z,X, W) + F(Z,X,Y, W)
Theorem.
DXR(Y, Z, W) + DZR(X,Y, W) + DYR(Z,X, W) =0,
where DXR(Y, Z, W) = DX(R(Y, Z, W)) — R(DXY,Z, W) — R(Y,DXZ, W) — R(Y, Z,DXW).
Proof. Observe that
DXR(Y, Z, W) :DX(R(Y, Z)W) — R(DXY, Z)W — R(Y, DXZ)W — R(Y, Z)DXW
:[DX, R(Y, Z)]W — R(DXY, Z)W — R(Y, DXZ)W.
Then

oDxR(Y,Z,W) =c[Dx,R(Y,Z)|W — oR(Y,Dx Z)W = —oR(Y,Z)DxW.

Since
R(Y,Z)=DzDy — DyDgz + Dy 5 = [Dz,Dy] — Dz y,
we have
o[Dx,R(Y,Z)|W = o[Dx,[Dgz, Dy|]|W — o[Dx, Dz y||W = —o[Dx, Dz y||W.
Moreover,

ocR(DxY,Z)YW + oR(Y,DxZ)W =cR(DzX,Y)W —ocR(Dx Z,Y))W
=oR([Z,X], Y)W
=o|[Dy, D[Z,X}]W — oDy zx)W
:G[Dy,D[Z,X}]W.

Hence



O'DXR(Y, Z, W) = — O'[DX,D[Z,Y]]W - O'[Dy,D[ZyX]]W = O'[DX,D[KZ}]W - O'[Dy,D[ZVX}]W =0.

Proposition.
R(0;,0;,01) = R0,
where
Ry = 0Ty — 9Ty, + TR, — TR,
Thus R(0;, 9;, Ok, 01) = Rijr = R} gmi- By symmetric, we also have
Rijii = —Rjiny, Riji = —Rijik,  Rijia + Rjrit + Ryijn = 0.
Proof. We have
Dp; Dy, 0y =Dp, (L'}, 0m)

:6]‘1—‘% o+ P?;Daj Om
=(0;T + F%ﬂ-m)@z-

Then the indentity holds since

R(0;,0j,0k) = Da; Do, Ox — Dg; Do, Ok

Proposition. Let X be a smooth vector field along a smooth surface f = f(s,t). Then
888tX - 8t88X - R(@tf, 88f)X
Proof.

X
=0,(X'0;) = 0, X'0; + X'8,0;
=80, X'0; + X'Dp,;0; = 0, X'0; + Xiatijajai
— 0,0, X
=0,0,X"0; + 0, X" 9, ' Dy, 0; + 8, X' 0, f’ Dy, 0;
+ X'0,0,f' Dy, 0; + X', f7 0, f* Doy, Do, 0;
—  0,0,X — 8,0,X
=X"0: 195 f* Do, Do; 8; — X" f? 8 f* Do, Dy, 0;
=X'0,f70, f*[Dg,, Ds;10;
=X'0,f10,f*R(8;,0)0;
=R(8:f70;,0,f*01.)(X"8;)
=R(0:f,0sf)X.

Sectional Curvature

Definition: sectional curvature. Define

sec : U (Tp./\/l)2 — R, sec(u,v) = R(u,v,u,v),u,v € T,M,pe M.
pEM



Then sec(u,u) = 0, sec(u,v) = sec(v,u), sec(su,tv) = s’tsec(u,v).
In this chapter, we often assume n = dimM > 1. Otherwise R(:,-,-,:) = 0.

Notation. Let u, v € T, M, u |f v. Write

uAv=span{u,v}, |uAv|=+/|u]2|]v]®— (u,v)2.
Definition: sectional curvature. Let
Y = {0 : 0 is a 2-plane in T, M for some p € M}.
Define

sec(u, v)

sec: ¥ — R, sec(u/\v)zw.
uAv

Then sec is well-defined.

Proof. Lete; A ea = u Avwithey L ey, |e;| = |es] = 1and
u = aej + bey,
v = cey + des.

Then

sec(u,v) =sec(ae; + bey, ce; + dey)
—(ad — bc)? sec(ey, e3)

=|u A v|*sec(ey, €3).
The identity above, together with |61 A ez| = 1, implies that sec is well-defined.

Theorem.

1
R(:L’, Yy, u, U) = Easat

)

: (sec(z + su,y + tv) — sec(x + sv,y + tu))
Proof. The identity holds since
358,5’ sec(z + su,y + tv)

(0,0)

=0,0; ‘(0 O)R(w + su,y + tv,x + su,y + tv)

:R(1:7 y’ u7 /U) + R(“? v? 1:7 y) —"_ R("'B’ U’ u? y) —"_ R(u7 y’ aj? v)
=2R(z,y,u,v) + 2R(z,v,u,y),

050y ’(0 ) sec(z + sv,y + tu)

:2R(z7 y? v’ u) + 2R(x’ u? v’ y)
= —2R(z,y,u,v) — 2R(u,v,z,y) — 2R(v, z,u,y)
=—4R(z,y,u,v) + 2R(x,v,u,y).

Definition: manifold with constant sectional curvature. If sec(c) = k, Vo € X for some k € R, then we call
M a manifold with constant sectional curvature k.



Theorem. M is a manifolds with constant sectional curvature & if and only if

R(u,v,2,y) = s((z,u){y,v) — (z,v)(u,y))-

Proof. The "only if" part is obvious. We will only prove the "if" part. Indeed, by the previous theorem, we have

Rz, y,u0) =50:0
KZ
6

00) (sec(m + su,y + tv) — sec(x + sv,y + tu))

Bé?t

o ([ suPly 0 — (@ + sy + 10)?
— |z + sv|ly + tu® + (z + sv,y + tu>2)
K
=2 (4@, {y,v) — 2(e,y) (u,v) — 202, 0)(wy)

— 4(z,v)(y,u) + 2(z, y) (v,u) + 2(z, u){v,y) )
=r((@,u) (y,v) = (@,0) (u, ).

Spaces with Constant Sectional Curvature

Proposition. Let

az+b )
f(Z)_CZ-|-d’ Z—ZC—f—ZyEC,

where a, b,c,d € R,ad — bc = 1. Then

() f(H?) = H”.

(i) f(R3) is a line L z-axis or a semicircle centered at some point in z-axis.
(iiiy f : H*> — H? is a Riemannian isometry.

Proof. (i) For w € H?, choose z = 220 Then f(2) = w and

e L5 L (dw—b B dw—b)
21 2t \a—cw a-—cw
~ (dw —b)(a — cw) — (dw — b)(a — cw)
B 2i(a — cw)(a — cw)
_adw — ab — cd|w|* 4+ bew — adw + ab + cd|w|* — bew

2i|la — cw|?
o w—w  Imw -0
 2ila—cw]?  |a— cw|? '

(ii) By computation,

(ad + be)Rew — cd|w|* — ab

Rez —
o la — cw|?
Let Rez = 0. If cd = 0, then
ab
Rew = T be

If cd # 0, then



ad + bc\’ s [(ad+bc > ab
(m— 2cd ) Ty _< 2cd > _E>0’

where w = x + 1y.
(iii) From (i), we know that
mz

Imf(z) = m

Thus for z € H?,u,v € T, H? = C, we have
u

df:(u) = f'(2)u = m
= (df:(u),df.(v))m2

1 U v
(mf ) ((az T ap (cz+d>2)
_ Re(uv)
(tmf (2))lez + dF
:Re(uﬁ)
(Imz)2

= (u,v) 2.

Theorem. Let
H"={z=(z',---,2") € R": 2" > 0}

be the hyperbolic space with g;; (z) = (") 2d;;. Then H™ has constant sectional curvature —1.

Proof. \We have

mk

1
Ffj 25(8j9im + 0igjm — Om8ij)9g
:( n)il (5mn52] 5jn5im - 5in5jm)6mk
( n) (5kn ij 6jn5ik - 5Zn5jk)

Hence
Ri’jk =0, — @Té’k + F?;F;m - F;'rllcrém
:(mn)—2 <6zn (5ln5jk - 6kn5jl - 5jn5kl) - 5]n(5ln5zk - Jkndzl - 5in5kl)
+ (5mn6ik - 5kn52m - 5in5km)(5ln(sjm - 5mn5jl - 5jn5ml)
- (5mn5jk - 5kn5jm - 5jn5km)(5ln5im - 6mn6il - 5zn5ml))

(") 2 (5m(5ln5jk — 0kn0j1 — 0jn0k1) — Ojn (81 0ik — Okndit — 0inlkr)

+ 6t (01n0jn, — 61 — 0jn0in) — Okn (91n0ij — 6indj1 — 0jn0ir) — Oin (Oindik — Okndji — 6jndr)

— 01 (01n0in — dit — 0in0in) + Okn(81n0ij — 0jnbit — 6inbj1) + 0 (91n0ik — Okndis — Oin Ok
=(z")"*(8udn — Siklin)-

Thus
Rijit =R gm = (&) (8udjn — Sixdj)-



Write e; = \81];{}1 0; = x"0;. Foro € X, choose u,v € T, H" such that
c=uAv, |ulgr =g =1, (Wv)ig =0, u=u'e, v=~1e.
Then |u A v| =1, and
sec(0) =R(u, v, u,v) = uivjukvl(:rn)4Rijkl

=u'v" v/ v — vl v?

=(u, v)gn — [ulgn [v[Fm = —1.

Therem. S2 has constant sectional curvature 1.
Proof. Let
f(0,¢) = (sinf, cosfsinp,cosfcosyp), 6 € [0,2m),p € [0,7].

It is sufficient to consider the curvature at e3 = f(0, 0). By computation,

Oy f = (cos @, — sinf sin ¢, — sin f cos ), . 09 f(0,0) = eq,
Oy,f = (0, cos @ cos @, — cos @ sin p) 0,f(0,0) = ea.

Let X = Oy f. Then

09X = Ty(—sinf, — cos @ sin p, — cosf cos p) = 0,
0,00 X =0,
0,X = T (0, —sinf cos ¢, sin § sin ) = (0, — sin @ cos ¢, sin O sin @),
0p0,X = T(0,— cos B cos ¢, cosOsinp) = (0, — cos f cos ¢, cos §sin p).

Thus
8,00 X — 090,X = R(Bof,0,f)X.
Choose 6 = ¢ = 0, and we get
es = R(ej,e2)ey; = R(ey,es,eq,e9) = 1.
Since Te, 52 is a linear space with dimension 2, S? has constant sectional curvature 1 at es.
Theorem. S™ has constant sectional curvature.

Proof. In the proof, we will use same notation of e; in both R™ and R™!. And we only compuate the curvature at
€n+1- Let

f(@) = (@, V/1=[eP), @R, jz<1.
Then
o.f =(en—ail=le®)t), 850 =e
0;0,f =Ty (0, ~61; (1 — [2) % — zia; (1 — |of)?)
= (6 + T2 PO (1~ o) @iy (1 [2) %)),
0,:0;0; f(0) =d;jey.



Hence
Or0;0; f — 0;01,0;f = R(0; f,0nf)0; f
— 5ijek — 5ikej = R(ej, ek)ei
— R(ej,ex, e, e1) = 6;j0k — 0i 5.
Foro =uAwv € Lwith |u| = |v] = 1,u L v, we have

SGC(O’) :R(U, v, U, U) = ujvkuile(eja €k, €4, el)
2

=uvy — wvuv; = |ul?|v|* — (u,v)? = 1.

Ricci Curvature and Scalar Curvature

Trace of bilinear operator. Let (V/, (-, -)) be an inner product space with dimension n and B a bilinear operator on
V. Then there exists a unique linear operator A : V' — V such that

B(u,v) = (Au,v), wu,v € V.

Define tr B := tr A.
Letey,--- , e, be abasis of V. Write

gij = leiye;),  (99) = (gij)Y, Ae; = Alej, Bij = Blei,e;).
Then we have

By = (dei,e;) = Afgr; )
— Al = Birg", ttB=trA= A; = B;;g”".

Given atenser T : V(M) x V(M) — C*°(M), define tr T : M — R by
trT'(p) = traceof T : T,M x M — R.
Then
trT = Tj;9" € C*(M),
where T;; = T'(0;, 0;).
LetT : VE(M) — C°°(M) be a k-tensor with k > 3. Define
Tiap) (s a8y 1 T8) = T T(T1, s Ba 1y a1y 2T 1y s Tgi1se > Th).
Then T, ) is a (k — 2)-tensor and
(T@)is o g s = Dineeind'
R(-,-,-,-) is a tensor of order 4. We have
R = R34 = Rijug” =0, Rpa = Raz = —Rua = —Regs).
Definition: Ricci curvature. Define Ric = R, 4). Then (Ric)i; = Rixjig™
Let T, M = span{e; }" ; with (e;, e;) = J;;. Then

Ric(e;,e;) = tr R(e;, -, €j,-) = R(ei, ex,e;,€)0u = R(e;, e, €j,€x).



When n = 2,
Ric(e1,e1) = R(e1,es,e1,e2) = sec(e, ez).
Whenn = 3,
Ric(e;, e;) = sec(e;, e;) + sec(e;, er), {3,4,k} ={1,2,3}.
Thus Ric and sec are equivalent when n < 3.
Definition: scalar curvature. Define scal = tr(Ric) = (Ric);;6 = Rixig” g™
If M has constant sectional curvature k, then

scal = Ric(e;, e;)d;; = sec(e;, ex) = n(n — 1)k.

Jacobi Field

Introduction

Definition: Jacobi field. Let 7y : [0, a] — M be a geodesic, J € V(7). If J satisfies the Jacobi equation:
Jll + R(’YI,J)’YI — 0,
we call J a Jacobi field along 7.

Proposition. Let 7 : [0, a] — M be a geodesic, J € V(7). Then J is a Jacobi field if and only if 3 a geodesic
variation f = f(s,t) : (—e,€) x [0,a] — M (i.e. fo = 7,02 f = 0,Vs) such that J = Bsf‘szo.

Proof. The "if" part. By computation,

0=8,82f| , = 8,0,0,f| _,+R(D:5,0,1)df| _,
=0;0:f|,_y + R(Y, J)Y = J"+ R(v, T}y

The "only if" part. Choose a : (—¢,&) — M and X € V(a) such that

a(0) =~(0), o/(0)=J(0), X(0)=+'(0), X'(0)=.J(0).

Let
f(s,t) = exp, (s (tX(s)), K(t) = 0,f(0,1)
Then
K(O) = 0; |s:0f(370) = 0s |S:0a(3) = O_/,(O) = J(O)?
K'(0) = 8,0,f(0,0) = 8,0:f(0,0) = X'(0) = J'(0)
Thus J = K.

Forv(0) = p,v,w € T, M, consider the ODE

JII + R(’)/I,J)’)’I — 0’
J(0) = v, J'(0) = w.



Let # be the set of all Jacobi fields with initial value in T, M x T, M and write
S TMxT,M— #, Sv,w)=J.
Then S is a isomorphism and dim _# = 2n. We also write
Ihr={Je Z:J(t) L~ (),Vte[0,a]}.
Proposition. Let J € _#.ThenJ € ¢+ <= J(0),J'(0) L +/(0).
Proof.

0 (J,y) = (J",%) = —R(~,J,7, )7)

=0
= (J,7) = (J'(0),7(0))t + (J(0),7(0))-

Proposition. ¢ = 7+ @ span{/,ty'}.
Proof. Observe thaty' |/ty',7/,ty' L _#+ and
dim ¢+ =dim{J € ¢ : J(0),J'(0) L~ (0)} =2n — 2.
Theorem. Let vy : [0, a] — M be a geodesic with v(0) = p,'(0) = v, |v| = 1, J a Jacobi field along 7y with
J(0)=0,J'(0) = w, |lw| =1,w L v. Then

1
|J(t)| =t — 5 sec(v,w)t’ +o(t*) ast — 0.

Proof. By computation,

O,y T1* =2(J(0), J(0)) = 0,
|[J|* =2(J"(0), J(0)) +2[J'(0)|* = 2,
8; |, | I > =2(J"(0),J(0)) + 6(J"(0), J'(0)) = —6R(~'(0), J(0),'(0), J'(0)) = 0,
B¢ [,_olJI? —2<J'"'(0) J(0)) +8(J"(0), J'(0)> +6|J"(0)|* = 8(J"(0), J'(0))
= —8(8|,_ R(Y,J,7),w) = —8(8|,_, (J'R(Y,8:,7")), w)
= —8((J")R(Y,0:,7)| g, w) = —8(R(Y, J',7") | ,_g» w)
= — 8R(v,w,v,w) = —8sec(v,w).

tlto

Hence

1 1 ?
T2 =t — 3 sec(v, w)t* + o(t?) = (t ~ 5 sec(v, w)t® + o(t3)) ast — 0.

Conjugate Points

Definition: conjugate points. Lety : [0, a] — M be a geodesic with p = v(0), g = y(ty) for some ¢y € (0, al.
if3J e _# \ {0} with J(0) = 0, J(¢y) = 0, we say q is a conjugate point of p.

Example. In 5'2, —p is a conjugate point of p € S2.
Proof. It is sufficient to consider the case when p = ej. Let

f(s,t) = (sinssint,cosssint,cost), v = fo.



Then ez = 7(0), —e3 = y(7) and f is a geodesic variation. Let J = 9| _, f be a Jacobi field. Then
J(t) = (sint,0,0) = J(0) =0,J(w) = 0.
Let

Hv={Je ¢ :J(0)=0}=S({0} x T,M),
/0,0:{.]6/ZJ(O):O,J(to)IO}.

Then g is a conjugate pointof p <=> dim _#y > 0. Thus we define
mulq = dim %y < n,
sincety’ € 2o\ _Zop-

Definition: critical point. Let f € C°(My; My), m; € M;. If df,,, is not surjective, then we call g a critical
point of f.
When dim M; = dim My, g is a critical point of f <= df,, is notinjective <= dimker(df,,,) > 0.

Since +y is a geodesic, y(t) = exp, (t7'(0)) and ¢ = exp, (vp), where vy = toy'(0).

Proposition. g is a conjugate point of p <= vy is a critical point of exp,, - In this case, mul g =
dim ker d(exp,,)y, -

Proof. We claim thatif J € _#;,
J(t) = 0s|,_, exp, t(7'(0) + sJ'(0)) = td(exp, )y (0)(J'(0))-
Let f(s,t) = exp, t(y'(0) + sJ'(0)). Then fo = v, f; = 0,Vs. Moreover,

s |,_, exp, t(7'(0) + sJ'(0))|,_, =0 = J(0),
0;05 ’3:0 exp, t(7'(0) + sJ'(0)) ‘t:O =0, ]8:08,5 |s:0 exp, t(7'(0) + sJ'(0))
:83‘820(7'(0) +sJ'(0)) = J'(0).

Hence we prove the claim. Then
J e /070 <~ JI(O) € ker d(epr)UO.
Thus

Fo0 = S({0} x kerd(exp,)y )

Then the proof is finished.

Jacobi Fields on a Manifold with Constant Sectional
Curvature
Definition: parallel vector field. Let « : [a, b] — M be a smooth curve, X € V(). If
8tX = 0,
we say X is a parallel vector field along . Set

Z ={X €V(a): ;X =0}.



Thenfor X, Y € 27, (X,Y) = constant.

Definition: geodesic frame. Let y : [0, a] — M is a geodesic with y(0) = p. Let T, M = span{e; }!" ; with
(€i,€ej) = d;;. And let E; be the parallel vector field along y with E;(0) = e;. Then

(Bi(t), B () = 85, TooM = span{Bi()}Ly, Wt [0,d].
Then {E; } , is called a geodesic frame.

Let M be a Riemannian manifold with constant sectional curvature &, v : [0, a] — M be a geodesic with y(0) =
p,|7'| = 1. Then
R(X,Y,Z,W)=r((X,Z)(Y,W) - (X, W)Y, Z))
— R(X,Y)Z =k((X,2)Y — (Y, 2)X).

Choose a geodesic frame { E; }}"_; along -y such that E,,(0) = +'(0). Then E,, = +'. For J € _#, write J =
azEz Then

J" = d!E;
! ’ n—1
R(Y,J) = &((¥,9)J = (J,¥)7) =& Y ciE;.
=1

Hence J"” + R(v', J)y' = 0 implies
al +ka; =0, i=1,---,n—1, a =0.
Then
((n—1 .
> (a% + b, cos(ﬁt)) E; + (ant +by)En, &> 0,
i=1
J(t) — Z(ait + bz)Eza K = 0,

Z( Slnhft)—kbCOSh(\/_t))E +(ant+b) ny k < 0.

When M = 5", : [0, 27] = Mwith p = 7(0), || = 1,4 = 7(to), we have
n—1
J(t) = Z(ai sint + b; cost)E; + (ant +bn)y' € 7.
i=1

ThenJ € oo \ {0} <
bi=--=by=0a,=0, th=m.

Hence q is a conjugate point of p if and only if g = ’)’(71’) = —p. In this case, mulqg = n — 1.



