- ▼ Manifolds
 - Introduction
 - Tangent Space
 - Differentiation
 - Tangent Bundle
- ▼ Riemannian Manifolds
 - Bilinear Forms
 - Definition of Riemannian manifolds
 - Integration on a Riemannian Manifold
- **▼** Connections
 - Affine Connections
 - Riemannian Connection
- ▼ Geodesics
 - Some Preliminaries
 - Geodesic and Expotential Map
 - Minimizing Properties
 - Hopf-Rinow Theorem
- ▼ Curvature
 - Sectional Curvature
 - Spaces with Constant Sectional Curvature
 - Ricci Curvature and Scalar Curvature
- ▼ Jacobi Field
 - Introduction
 - Conjugate Points
 - Jacobi Fields on a Manifold with Constant Sectional Curvature

Manifolds

Introduction

Composition of mappings. Let f:A
ightarrow B, g:C
ightarrow D. Define

$$g\circ f:f^{-1}(C) o D,\ g\circ f(a)=g(f(a)).$$

Diffeomorphism. $f:U\subset\mathbb{R}^n\to V\subset\mathbb{R}^m$ is called a diffeomorphism if U,V are open, f is bijective and $f,f^{-1}\in C^\infty.$

Local coordinate. Let $\mathcal{M} \neq \varnothing, U$ open in $\mathbb{R}^n, \varphi: U \to \mathcal{M}$ injective. Then φ is called a local coordinate on \mathcal{M} . If φ is also onto, then we call φ a global coordinate. Let ψ be another local coordinate on \mathcal{M} . Then φ and ψ are compatible if $\varphi^{-1} \circ \psi$ is a diffeomorphism.

Definition: Manifold. Let $\mathcal{M} \neq \varnothing, n \in \mathbb{N}^*, \varphi_\lambda : U_\lambda \subset \mathbb{R}^n \to \mathcal{M}$ are local coordinates on $\mathcal{M}, \lambda \in \Lambda$, satisfying (i) $\mathcal{M} = \bigcup_{\lambda \in \Lambda} \operatorname{Rg} \varphi_\lambda$, (ii) $\forall \lambda, \mu \in \Lambda, \varphi_\lambda$ and φ_μ are compatible.

We say $\mathcal{D}=\{arphi_{\lambda}:\lambda\in\Lambda\}$ is a diffeomorphic structure on \mathcal{M} and $(\mathcal{M},\mathcal{D})$ is a n-dimensional smooth manifold.

Topology on a manifold. $\Omega \subset \mathcal{M}$ is open if $\forall \varphi \in \mathcal{D}, \varphi^{-1}(\Omega)$ open in \mathbb{R}^n . Then $\mathcal{T} = \{\Omega \text{ open in } \mathcal{M}\}$ is a topology on \mathcal{M} .

Assumption. (i) \mathcal{T} is a Hausdorff topology on \mathcal{M} ,

(ii)
$$\exists arphi_k \in \mathcal{D}, k=1,2,\cdots$$
 such that $\mathcal{M}=igcup_{k=1}^\infty \mathrm{Rg} arphi_k.$

Smooth maps on manifolds. Suppose $(\mathcal{M}, \mathcal{D}_{\mathcal{M}}), (\mathcal{N}, \mathcal{D}_{\mathcal{N}})$ are manifolds, $f: \mathcal{M} \to \mathcal{N}$ is continuous. For $\varphi \in \mathcal{D}_{\mathcal{M}}, \psi \in \mathcal{D}_{\mathcal{N}}, \psi^{-1} \circ f \circ \varphi$ is a coordinate expression of f.

f is smooth if every coordinate expresion of f is smoth. In this case, we write $f \in C^\infty(\mathcal{M};\mathcal{N})$.

Diffeomorphism on manifolds. $f:\mathcal{M}\to\mathcal{N}$ is called a diffeomorphism if f is bijective and f,f^{-1} are smooth. We say \mathcal{M} and \mathcal{N} are diffeomorphic.

Homeomorphism \rightarrow diffeomorphism: Milnor's 7-dimensional sphere.

Maximal diffeomorphic structure. Suppose $(\mathcal{M}, \mathcal{D})$ be a n-dim manifold. Write

 $\bar{\mathcal{D}} = \{ \varphi \text{ n-dim local coordinate on } \mathcal{M} : \varphi \text{ compatible with each } \psi \in \mathcal{D} \}.$

Then $\bar{\mathcal{D}}$ is also a diffeomorphic structure on \mathcal{M} and $(\mathcal{M},\mathcal{D}),(\mathcal{M},\bar{\mathcal{D}})$ are diffeomorphic.

Open submanifold. Let $(\mathcal{M},\mathcal{D})$ be a manifold, $\Omega \neq \emptyset$ open in \mathcal{M} . Write

$$\mathcal{D}_{\Omega}=\Big\{arphiig|_{arphi^{-1}(\Omega)}:arphi\in\mathcal{D}\Big\}.$$

Then $(\Omega, \mathcal{D}_{\Omega})$ is a manifold. We call Ω is an open submanifold of \mathcal{M} .

Local smoothness. Suppose \mathcal{M}, \mathcal{N} are manifolds, $f: \mathcal{M} \to \mathcal{N}.$

Let $\Omega\subset\mathcal{M}$ open. We say f is smooth in Ω if $f\big|_{\Omega}:\Omega o\mathcal{N}$ is smooth.

Let $p \in \mathcal{M}$. We say f is smooth at p if \exists a neighborhood U of p such that f smooth in U.

Theorem: Partition of Unity. Let $\mathcal M$ be a connected manifold, $\mathcal O$ an open cover of $\mathcal M$.

Then $\exists arphi_{\lambda} \in C_0^{\infty}(\mathcal{M};[0,1]), \lambda \in \Lambda$ such that

(i) $\{\varphi_{\lambda}:\lambda\in\Lambda\}$ is local finite, i.e. $\forall x\in\mathcal{M},\exists$ neighborhood V of x and $\lambda_1,\cdots,\lambda_N\in\Lambda$ such that $\mathrm{supp}\varphi_{\lambda}\cap V=\varnothing, \forall \lambda\neq\lambda_i, i=1,\cdots,N.$

(ii) $\forall \lambda \in \Lambda, \exists V \in \mathcal{O}, \operatorname{supp} \varphi_{\lambda} \subset V.$

(iii) $\sum_{\lambda\in\Lambda} arphi_\lambda \equiv 1$ on $\mathcal{M}.$

Corollary: Existence of cut-off function. Let $p \in \mathcal{M}, U$ neighborhood of p. Then $\exists \varphi \in C_0^{\infty}(\mathcal{M}; [0,1])$ such that (i) $\operatorname{supp} \varphi \subset U$, (ii) $\varphi \equiv 1$ near p.

Example: linear space. n-dim linear space $X=\mathrm{span}\{v_k\}_{k=1}^n$ Global coordinate: $\varphi:\mathbb{R}^n\to X, \varphi(x)=x^iv_i, x=(x^1,\cdots,x^n).$

Example: graph of a smooth function. $f:\Omega\subset\mathbb{R}^n o\mathbb{R}^m$ smooth, Ω open. Define

$$\mathrm{graph} f = \{(x,f(x)): x \in \Omega\} \subset \mathbb{R}^{m+n}.$$

Global coordinate: $arphi:\Omega o \mathrm{graph} f,x\mapsto (x,f(x)).$

Example: $n ext{-sphere.}\ S^n=\{x\in\mathbb{R}^{n+1}: |x|=1\}.$

Local coordinate: $arphi_k^\pm: B_1:=\{x\in\mathbb{R}^n: |x|<1\} o S^n,$ with

$$arphi_k^{\pm}(x) = (x^1, \cdots, x^{k-1}, \pm \sqrt{1-|x|^2}, x^{k+1}, \cdots, x^n),$$

where $k = 1, \dots, n + 1$.

Example: projective space. $P_n=\{l\subset\mathbb{R}^{n+1}:l \text{ is a one-dim linear subspace}\}.$ Local coordinate: $\varphi_k:\mathbb{R}^n\to P_n$ with

$$arphi_k(x) = \mathbb{R}(x^1,\cdots,x^{k-1},1,x^k,\cdots,x^n),$$

where $k=1,\cdots,n+1$.

Example: product manifold. $\mathcal{M}^m, \mathcal{N}^n$ are manifolds. For, $\varphi \in \mathcal{D}_{\mathcal{M}}, \psi \in \mathcal{D}_{\mathcal{N}},$ define

$$arphi imes \psi : \mathrm{Dom} arphi imes \mathrm{Dom} \psi o \mathcal{M} imes \mathcal{N}, (x,y) \mapsto (arphi(x), \psi(y))$$

and

$$\mathcal{D}_{\mathcal{M} imes\mathcal{N}}=\{arphi imes\psi:arphi\in\mathcal{D}_{\mathcal{M}},\psi\in\mathcal{D}_{\mathcal{M}}\}.$$

Then $(\mathcal{M} imes \mathcal{N}, \mathcal{D}_{\mathcal{M} imes \mathcal{N}})$ is a (m+n)-dim manifold.

Tangent Space

Suppose \mathcal{M} be a n-dim smooth manifold.

Linear mapping and linear functional. For linear spaces X and Y, denote the space of all linear mappings from X to Y by $\mathcal{L}(X;Y)$, and $\mathcal{L}(X)=\mathcal{L}(X;\mathbb{R})$.

Space C_p^∞ . For $p \in \mathcal{M},$ define

$$C_p^{\infty} = \{f : \exists \text{ neighborhood } U \text{ of } p \text{ s.t. } f \in C^{\infty}(U)\}.$$

For $f,g\in C_p^\infty,$ regard f=g if $f\equiv g$ near p. For $lpha,eta\in\mathbb{R},f,g\in C_p^\infty,$ define

$$(\alpha f + \beta g)(x) = \alpha f(x) + \beta g(x), (fg)(x) = f(x)g(x),$$

where $x\in \mathrm{Dom} f\cap \mathrm{Dom} g.$ Then C_p^∞ is a linear space.

Smooth curve on manifold $\mathcal{M}.\ \gamma \in C^{\infty}((a,b);\mathcal{M}), -\infty \leq a < b \leq \infty.$

Definition: tangent. γ a smooth curve on $\mathcal M$ with $\gamma(t_0)=p.$ Define $\gamma'(t_0)\in\mathscr L(C_p^\infty)$ by

$$\langle \gamma'(t_0), f
angle = rac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=t_0} f \circ \gamma, \quad f \in C_p^\infty.$$

 $\gamma'(t_0)$ is called the tangent of γ at t_0 .

Definition: tangent space and tangent vector. The tangent space of \mathcal{M} at p is

$$T_p\mathcal{M} = \{\gamma'(t_0) : \gamma \text{ curve on } \mathcal{M}, \gamma(t_0) = p\}.$$

 $v \in T_p \mathcal{M}$ is called a tangent vector.

Remark. $p \neq q \implies T_p \mathcal{M} \cap T_q \mathcal{M} = \varnothing$.

Theorem. $T_p\mathcal{M}$ is a n-d linear space, where $n=\dim\mathcal{M}$. Given a local coordinate φ with $\varphi(x_0)=p$. Then a basis of $T_p\mathcal{M}$ is

$$\left.rac{\partial}{\partial x^i}
ight|_p = rac{\mathrm{d}}{\mathrm{d}t}
ight|_{t=0} arphi(x_0+te_i).$$

Moreover, for a curve γ on $\mathcal M$ with $\gamma(t_0)=p,$ write

$$\gamma^i = (arphi^{-1} \circ \gamma)^i, \quad i = 1, \cdots, n.$$

Then $\gamma'(t_0) = \left(\gamma^i(t_0)\right)' \frac{\partial}{\partial x^i} \Big|_{n}$.

Proof. Firstly we show that $\gamma'(t_0)=\left(\gamma^i(t_0)\right)'rac{\partial}{\partial x^i}ig|_p$. Indeed, for $f\in C_p^\infty,$

$$\langle rac{\partial}{\partial x^i} \Big|_p, f
angle = rac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} f \circ arphi(x_0 + t e_i) = rac{\partial (f \circ arphi)}{\partial x^i}(x_0).$$

Then

$$egin{aligned} raket{\left(\gamma^i(t_0)
ight)'rac{\partial}{\partial x^i}\Big|_p,f} &= ig(\gamma^i(t_0)ig)'rac{\partial(f\circarphi)}{\partial x^i}(\gamma(t_0)) \ &= rac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=t_0}f\circarphi(\gamma^1,\cdots,\gamma^n) \ &= rac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=t_0}f\circ\gamma &= raket{\gamma'(t_0),f}. \end{aligned}$$

Hence $\gamma'(t_0)=\left(\gamma^i(t_0)\right)'\frac{\partial}{\partial x^i}\big|_p$. From this indentity, we immediately get $T_p\mathcal{M}$ is a linear space spanned by $\{\frac{\partial}{\partial x^i}\big|_p\}_{i=1}^n$. Finally we show that $\{\frac{\partial}{\partial x^i}\big|_p\}_{i=1}^n$ are linearly independent. If for some $\alpha_1,\cdots,\alpha_n\in\mathbb{R},$ $\alpha_i\frac{\partial}{\partial x^i}\big|_p=0$, then

$$\langle lpha^i rac{\partial}{\partial x^i}ig|_p, (arphi^{-1})^j
angle = lpha^i rac{(arphi^{-1})^j \circ arphi}{\partial x^i}(x_0) = lpha^i rac{\partial x^j}{\partial x^i}(x_0) = lpha_j = 0.$$

Thus $\alpha_1=\cdots=\alpha_n=0,$ and $\{\frac{\partial}{\partial x^i}\big|_p\}_{i=1}^n$ are linearly independent.

Propostion: properties of tangent vectors. Let $f,g\in C_p^\infty,v,w\in T_p\mathcal{M},lpha,eta\in\mathbb{R}.$

- (i) $f \equiv g$ near p\implies $\langle v, f \rangle = \langle v, g \rangle$.
- (ii) $\langle v, \alpha f + \beta g \rangle = \alpha \langle v, f \rangle + \beta \langle v, g \rangle.$
- (iii) $\langle lpha v + eta w, f
 angle = lpha \langle v, f
 angle + eta \langle w, f
 angle.$
- (iv) $\langle v,fg \rangle = f(p)\langle v,g \rangle + g(p)\langle v,f \rangle$.

Drivetive on a linear space. Let X be a n-d linear space, Ω open in $X,p\in\Omega.$ Define $L:X o T_p\Omega$ by

$$L(v) = rac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0}(p+tv), \quad v \in X.$$

Then L is a linear isomorphism from X \to $T_p\Omega$. In this sense, we regard $T_p\Omega=X$ and $v=rac{\mathrm{d}}{\mathrm{d}t}ig|_{t=0}(p+tv)$.

Proof. Let E_1,\cdots,E_n be a basis of $X, \varphi(x)=x^iE_i$ with $x=(x_1,\cdots,x_n)\in\mathbb{R}^n$. Then

$$egin{aligned} L(v^i E_i) &= rac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} \left(p + t v^i E_i
ight) \ &= rac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} \left(arphi^{-1} (p + t v^i E_i)
ight)^j rac{\partial}{\partial x^j} \Big|_p \ &= rac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} \left(arphi^{-1} (p) + t v^i e_i
ight)^j rac{\partial}{\partial x^j} \Big|_p \ &= rac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} \left(\left(arphi^{-1} (p)
ight)^j + t v^j
ight) rac{\partial}{\partial x^j} \Big|_p \ &= v^j rac{\partial}{\partial x^j} \Big|_p . \end{aligned}$$

Differentiation

Definition: differentiation on manifolds. For $f\in C^\infty(\mathcal{M};\mathcal{N})$ and $p\in\mathcal{M},$ define $df_p:T_p\mathcal{M} o T_{f(p)}\mathcal{N}$ by

$$df_p(v) = rac{d}{dt} \Big|_{t=t_0} f \circ \gamma, \quad v \in T_p \mathcal{M},$$

where γ is a curve on ${\mathcal M}$ such that $\gamma(t_0)=p, \gamma'(t_0)=v.$

Coordinate expression of differentiation. Let $\varphi=\varphi(x)\in\mathcal{D}_{\mathcal{M}}$ with $p=\varphi(x_0),$ $\psi=\psi(y)\in\mathcal{D}_{\mathcal{N}}$ with $f(p)=\psi(y_0),$ $\tilde{f}=\psi^{-1}\circ f\circ \varphi$ and $\gamma^i=(\varphi^{-1}\circ \gamma)^i$. Then

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=t_0} f \circ \gamma &= \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=t_0} (\psi^{-1} \circ f \circ \gamma)^j \frac{\partial}{\partial y^j}\Big|_{f(p)} \\ &= \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=t_0} \tilde{f}^j (\gamma^1, \cdots, \gamma^n) \frac{\partial}{\partial y^j}\Big|_{f(p)} \\ &= (\gamma^i)'(t_0) \frac{\partial \tilde{f}^j}{\partial x^i} (x_0) \frac{\partial}{\partial y^j}\Big|_{f(p)}. \end{split}$$

Proposition: properties of differentiation. Let $f,g\in C^\infty(\mathcal{M};\mathcal{N}),v,w\in T_p\mathcal{M},lpha,eta\in\mathbb{R},h\in C^\infty(\mathcal{N};\mathcal{P})$.

- (i) $f \equiv g$ near $p \implies df_p = dg_p$.
- (ii) $df_p(lpha v + eta w) = lpha df_p(v) + eta df_p(w).$
- (iii) $d(h\circ f)_p=dh_{f(p)}\circ df_p.$

Proof. (i)(ii) are obvious.

(iii) For curve γ on ${\mathcal M}$ with $\gamma(t_0)=p, \gamma'(t_0)=v,$ we have

$$d(h\circ f)_p(v)=rac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=t_0}h\circ (f\circ \gamma)=dh_{f(p)}\left((f\circ \gamma)'(t_0)
ight)=dh_{f(p)}(df_p(v)).$$

Useful formulas.

- (i) Let $I_{\mathcal{M}}$ be the indentity map on $\mathcal{M}.$ Then $d(I_{\mathcal{M}})_p=I_{T_p}\mathcal{M}, orall p\in M.$
- (ii) Let $f\in C^\infty(\mathcal{M}).$ Then $df_p(v)=\langle v,f
 angle, orall v\in T_p\mathcal{M}.$
- (iii) Let γ be a curve on $\mathcal{M}.$ Then $d\gamma_{t_0}(1)=\gamma'(t_0).$

Proof. (i) $d(I_{\mathcal{M}})_p(\gamma'(t_0)) = \frac{\mathrm{d}}{\mathrm{d}t}\big|_{t=t_0} I_{\mathcal{M}} \circ \gamma = \frac{\mathrm{d}}{\mathrm{d}t}\big|_{t=t_0} \gamma = \gamma'(t_0).$

- (ii) $df_p(\gamma'(t_0)) = rac{\mathrm{d}}{\mathrm{d}t}ig|_{t=t_0} f\circ \gamma = \langle v,f
 angle.$
- (iii) $d\gamma_{t_0}(1)=rac{\mathrm{d}}{\mathrm{d}t}ig|_{t=0}\gamma(t+t_0)=\gamma'(t_0).$

Tangent Bundle

Definition: tangent bundle. Given a n-d manifold $(\mathcal{M}, \mathcal{D})$. Write

$$T\mathcal{M} = igcup_{p \in \mathcal{M}} T_p \mathcal{M}.$$

Set

$$\hat{\mathcal{D}} = \{\hat{arphi}: arphi \in \mathcal{D}\}, \quad \hat{arphi}(x,v) = v^i rac{\partial}{\partial x^i} \Big|_{arphi(x)}, x,v \in \mathbb{R}^n.$$

Then $(T\mathcal{M},\hat{\mathcal{D}})$ is a 2n-d manifold, which called the tangent bundle of $\mathcal{M}.$

Definition: smooth vector field. $X \in C^{\infty}(\mathcal{M}; T\mathcal{M})$ is called a smooth vetor field if

$$X(p) \in T_p \mathcal{M}, \quad orall p \in \mathcal{M}.$$

Let arphi=arphi(x) be a local coordinate on an open set Ω in $\mathcal{M}.$ Write

$$\left.rac{\partial}{\partial x^i}:\Omega o T_p\Omega, p\mapsto rac{\partial}{\partial x^i}
ight|_p=rac{\mathrm{d}}{\mathrm{d}t}
ight|_{t=0}arphiig(arphi^{-1}(p)+te_iig).$$

Then $\frac{\partial}{\partial x^i}$ is a smooth vector field on Ω . $\left\{\frac{\partial}{\partial x^i}\right\}_{i=1}^n$ is a basis vetor field.

Proof. The coordinate expression of X is

$$\hat{arphi}^{-1}\circrac{\partial}{\partial x^i}\circarphi(x)=(x,e_i)\in C^\infty.$$

Thus $rac{\partial}{\partial x^i}\in C^\infty(\Omega;T_p\Omega).$

Proposition: components of a vector field. Let $X:\mathcal{M} o T, X(p)\in T_p\mathcal{M}.$ Define $X^i:\Omega o\mathbb{R}$ by

$$X(p)=X^i(p)rac{\partial}{\partial x^i}\Big|_p,\quad p\in\Omega.$$

Then X is a vector field if and only if $X^i \in C^\infty(\Omega), i=1,\cdots,n.$

Proof. Since

$$\hat{\varphi}^{-1} \circ X \circ \varphi(x) = (x, (X^i \circ \varphi)e_i) = (x, X^1 \circ \varphi, \cdots, X^n \circ \varphi),$$

 $X \text{ is a vector field} \iff \text{each } X^i \circ \varphi \text{ smooth} \iff \text{each } X^i \text{ smooth}.$

Proposition. $T\Omega = \Omega imes \mathbb{R}^n$ (with coordinate $\varphi = \varphi(x)$).

Proof. Define a one-to-one mapping $\psi:T\Omega o \Omega imes \mathbb{R}^n$ by

$$\psi\left(v^irac{\partial}{\partial x^i}\Big|_p
ight)=(p,v^1,\cdots,v^n).$$

 $\mathcal{V}(\mathcal{M}) = \{X : X \text{ smooth vector field on } \mathcal{M}\}.$

Product of a smooth function and a vector field. Let $f,g\in C^\infty(\mathcal{M}), X,Y\in\mathcal{V}(\mathcal{M}).$ Define

$$(fX+gY)(p)=f(p)X_p+g(p)Y_p,\quad p\in M.$$

Then smoothness of components of X,Y implies $fX+gY\in\mathcal{V}(\mathcal{M}).$ Hence $\mathcal{V}(\mathcal{M})$ is a C^{∞} -module.

Action of a vector field on a smooth function. For $X\in\mathcal{V}(\mathcal{M}), f\in C^\infty(\mathcal{M}),$ define Xf by

$$(Xf)(p)=\langle X_p,f
angle,\quad p\in\mathcal{M}.$$

Then $Xf\in C^\infty(\mathcal{M})$.

If
$$X=X^i rac{\partial}{\partial x^i}$$
, then $Xf=X^i rac{\partial f}{\partial x^i}$, where $rac{\partial f}{\partial x^i}=rac{\partial (f\circ \varphi)}{\partial x^i}\circ \varphi^{-1}$.

Product of two vector fields. Let $X,Y\in\mathcal{V}(\mathcal{M})$. Define $XY:C^{\infty}(\mathcal{M})\to C^{\infty}(\mathcal{M})$ by

$$(XY)(f) = X(Yf), \quad f \in C^{\infty}(\mathcal{M}).$$

Then XY is a linear differential operator of 2-order. The commutator of X,Y is XY-YX.

Proposition: Lie bracket. Let $X,Y\in\mathcal{V}(\mathcal{M})$. Then there exists a unique vector field $[X,Y]\in\mathcal{V}(\mathcal{M})$ such that

$$[X,Y]f = (XY - YX)f, \quad \forall f \in C^{\infty}(\mathcal{M}).$$

We call [X,Y] the Lie bracket of X and Y.

Coordinate expression of Lie bracket. Let $X=X^i rac{\partial}{\partial x^i}, Y=Y^i rac{\partial}{\partial x^i},$ then

$$[X,Y] = \left(X^irac{\partial Y^j}{\partial x^i} - Y^irac{\partial X^j}{\partial x^i}
ight)rac{\partial}{\partial x^j}.$$

Proof.

$$\begin{split} [X,Y]f = & X^i \frac{\partial}{\partial x^i} \left(Y^j \frac{\partial f}{\partial x^j} \right) - Y^i \frac{\partial}{\partial x^i} \left(X^j \frac{\partial f}{\partial x^j} \right) \\ = & \left(X^i \frac{\partial Y^j}{\partial x^i} \frac{\partial f}{\partial x^j} + X^i Y^j \frac{\partial^2 f}{\partial x^i \partial x^j} \right) \\ & - \left(Y^i \frac{\partial X^j}{\partial x^i} \frac{\partial f}{\partial x^j} + Y^i X^j \frac{\partial^2 f}{\partial x^i \partial x^j} \right) \\ = & \left(X^i \frac{\partial Y^j}{\partial x^i} - Y^i \frac{\partial X^j}{\partial x^i} \right) \frac{\partial f}{\partial x^j}. \end{split}$$

Proposition: properties of Lie bracket. Let $X,Y,Z\in\mathcal{V}(\mathcal{M}), \alpha,\beta\in\mathbb{R}$.

(i)
$$[X,Y] = -[Y,X]$$
.

(ii)
$$[\alpha X + \beta Y, Z] = \alpha[X, Z] + \beta[Y, Z].$$

(iii)
$$[[X,Y],Z]+[[Y,Z],X]+[[Z,X],Y]=0$$
 (Jacobi's indentity).

Proof. (i)(ii) are obvious.

(iii) Write
$$X_{3i}=X, X_{3i+1}=Y, X_{3i+2}=Z, i\in\mathbb{Z}.$$
 Then

$$\begin{split} &\sum_{k=0}^{2}[[X_{k},X_{k+1}],X_{k+2}]\\ &=\sum_{k=0}^{2}[X_{k}X_{k+1}-X_{k+1}X_{k},X_{k+2}]\\ &=\sum_{k=0}^{2}(X_{k}X_{k+1}X_{k+2}-X_{k+2}X_{k}X_{k+1}-X_{k+1}X_{k}X_{k+2}+X_{k+2}X_{k+1}X_{k})\\ &=\sum_{k=0}^{2}(X_{k}X_{k+1}X_{k+2}-\sum_{k=0}^{2}X_{k}X_{k-2}X_{k-1}-\sum_{k=0}^{2}X_{k+1}X_{k}X_{k+2}+\sum_{k=0}^{2}X_{k+1}X_{k}X_{k-1}\\ &=\sum_{k=0}^{2}X_{k}X_{k+1}X_{k+2}-\sum_{k=0}^{2}X_{k}X_{k+1}X_{k+2}-\sum_{k=0}^{2}X_{k+1}X_{k}X_{k+2}+\sum_{k=0}^{2}X_{k+1}X_{k}X_{k+2}\\ &=0. \end{split}$$

Definition: diffeomorphism. Let $F:\mathcal{M} o\mathcal{N}$ be a diffeomorphism. Define $dF:\mathcal{V}(\mathcal{M}) o\mathcal{V}(\mathcal{N})$ by

$$dF(X)(F(p))=dF_p(X(p)), \quad X\in \mathcal{V}(\mathcal{M}), p\in \mathcal{M}.$$

$$dF\left(X^irac{\partial}{\partial x^i}
ight)=(X^i\circ F^{-1})dF\left(rac{\partial}{\partial x^i}
ight).$$

Proposition. dF([X,Y]) = [dF(X), dF(Y)].

Proof. For $g \in C^{\infty}(\mathcal{M}; \mathcal{N})$,

$$\begin{split} \langle dF([X,Y]),g\rangle = &\langle [X,Y],g\circ F\rangle \\ = &\left\langle \left(X^i\frac{\partial Y^j}{\partial x^i} - Y^i\frac{\partial X^j}{\partial x^i}\right)\frac{\partial}{\partial x^j},g\circ F\right\rangle \\ = &\left\langle \left(\left(X^i\frac{\partial Y^j}{\partial x^i} - Y^i\frac{\partial X^j}{\partial x^i}\right)\circ F^{-1}\right)dF\left(\frac{\partial}{\partial x^j}\right),g\right\rangle. \end{split}$$

Since

$$dF\left(rac{\partial}{\partial x^i}
ight)(Y^j\circ F^{-1})=rac{\partial Y^j}{\partial x^i}\circ F^{-1},$$

we get $\langle dF([X,Y]),g\rangle=\langle [dF(X),dF(Y)],g\rangle.$

Riemannian Manifolds

Bilinear Forms

Definition: bilinear form. Let $B: \mathcal{V}(\mathcal{M}) imes \mathcal{V}(\mathcal{M}) o C^\infty(\mathcal{M}).$ If

$$B(fX + gY, Z) = fB(X, Z) + gB(Y, Z),$$

$$B(X, fY + gZ) = fB(X, Y) + g(X, Z)$$

for any $f,g\in C^\infty(\mathcal{M}), X,Y,Z\in \mathcal{V}(\mathcal{M}),$ then we call B a bilinear form.

Proposition. Let $F: \mathcal{V}(\mathcal{M}) o C^\infty(\mathcal{M})$ satisfying

$$F(fX+gY)=fF(X)+gF(Y), \quad f,g\in C^\infty(\mathcal{M}), X,Y\in\mathcal{V}(\mathcal{M}).$$

For $p \in \mathcal{M}$, if $X_p = Y_p$, then F(X)(p) = F(Y)(p).

Proof. Choose a cut-off function $\zeta \in C^\infty(\mathcal{M})$ such that $\zeta(p) = 1$ and $\operatorname{supp} \zeta \subset \operatorname{Rg} \varphi$, where $\varphi = \varphi(x)$ is a local coordinate near p. For $X = X^i \frac{\partial}{\partial x^i}$, $Y = Y^i \frac{\partial}{\partial x^i}$ near p, $X_p = Y_p \implies X^i(p) = Y^i(p)$, $\forall i$, which implies

$$\begin{split} F(X)(p) &= F(\zeta^2 X)(p) = F\left(\zeta^2 X^i \frac{\partial}{\partial x^i}\right)(p) \\ &= (\zeta X^i)(p) F\left(\zeta \frac{\partial}{\partial x^i}\right)(p) = X^i(p) F\left(\zeta \frac{\partial}{\partial x^i}\right)(p) \\ &= Y^i(p) F\left(\zeta \frac{\partial}{\partial x^i}\right)(p) = F(Y)(p). \end{split}$$

Hence F(X)(p) = F(Y)(p).

Corollary. Let $B: \mathcal{V}(\mathcal{M}) \times \mathcal{V}(\mathcal{M}) \to C^{\infty}(\mathcal{M})$ be a bilinear form on $\mathcal{M}, p \in \mathcal{M}, X, \tilde{X}, Y, \tilde{Y} \in \mathcal{V}(\mathcal{M})$. If $X(p) = \tilde{X}(p), Y(p) = \tilde{Y}(p)$, then $B(X,Y)(p) = B(\tilde{X},\tilde{Y})(p)$.

Pointwise definition of a bilinear form. Let B be a bilinear form on $\mathcal{M}, p \in \mathcal{M}, u, v \in T_p \mathcal{M}$. Define

$$B(u,v) := B(X,Y)(p),$$

where $X,Y\in\mathcal{V}(\mathcal{M}),X(p)=u,Y(p)=v.$ From the previous corollary, we know B(u,v) is well-defined. Then $B:T_p\mathcal{M}\times T_p\mathcal{M}\to\mathbb{R}$ is a biliear operator on $T_p\mathcal{M}$.

Local definition of a bilinear form. Let Ω open in $\mathcal{M}, X, Y \in \mathcal{V}(\Omega)$. Define $B: \mathcal{V}(\Omega) \times \mathcal{V}(\Omega) \to C^{\infty}(\Omega)$ by

$$B(X,Y)(p)=B(X_p,Y_p),\quad p\in\Omega.$$

Then B is a bilinear form on Ω .

Proof. First we verify that $B(X,Y)\in C^\infty(\Omega)$. It is sufficient to verify B(X,Y) smooth near p. Choose a cut-off function $\zeta\in C^\infty(\mathcal{M})$ such that $\zeta\equiv 1$ near p and $\mathrm{supp}\zeta\subset\Omega$. Then

$$B(X,Y) \equiv B(\zeta X, \zeta Y) \text{ near } p.$$

Hence B(X,Y) is smooth near p. Moreover, since B is a bilinear operator on $T_p\mathcal{M}$ for each p, it is easy to see that B is bilinear on $\mathcal{V}(\Omega)$.

Components of a bilinear form. Let Ω be a coordinate neighborhood with coordinate $\varphi=\varphi(x)$. Write

$$B_{ij}:=B\left(rac{\partial}{\partial x^i},rac{\partial}{\partial x^j}
ight), \quad i,j=1,\cdots,n.$$

 B_{ij} is a component of B, since

$$X = X^i rac{\partial}{\partial x^i}, Y = Y^j rac{\partial}{\partial x^j} \implies B(X,Y) = X^i Y^j B_{ij}.$$

Let g be a bilinear form on \mathcal{M} . g is called symmetric if

$$g(u,v)=g(v,u), \quad orall p\in \mathcal{M}, u,v\in T_p\mathcal{M}.$$

$$g(u,u) \geq 0, orall p \in \mathcal{M}, orall u \in T_p(\mathcal{M}), \ ext{and} \quad g(u,u) = 0 \iff u = 0.$$

Definition of Riemannian manifolds

Definition: Riemannian manifold. Let g be a symmetric positive bilinear form on \mathcal{M} . Then g is called a Riemannian metric on \mathcal{M} and (\mathcal{M}, g) is a called a Riemannian manifold.

Proposition. Every smooth manifold has a Riemannian metric.

Proof. Let $\{\zeta_k\}_{k=1}^{\infty}$ be a partition of unity with open cover $\{\Omega_k\}_{k=1}^{\infty}$, where Ω_k is a coordinate neighborhood with coordinate φ_k . Define a bilinear form g_k on Ω_k by

$$g_k(X,Y)=(X^i-Y^i)^2,\quad X,Y\in \mathcal{V}(\Omega_k).$$

Define a bilinear form g on \mathcal{M} by

$$g(X,Y) = \sum_{k=1}^\infty g_k(\zeta_k X, \zeta_k Y), \quad X,Y \in \mathcal{V}(\mathcal{M}).$$

Then g is obviously symmetric and nonnegative. If g(X,Y)=0, then $g_k(\zeta_k X,\zeta_k Y)=0$ for each k. Hence $\zeta_k X=\zeta_k Y$ for each $k\implies X=Y$. Hence g is Riemannian metric on \mathcal{M} .

Let (\mathcal{M},g) be a Riemannian manifold. Then g is a linear product on $T_p(\mathcal{M})$ for each $p\in\mathcal{M}.$ Write

$$|u|:=g(u,u)^{rac{1}{2}},\quad u\in T_p(\mathcal{M}),$$

and

$$g_{ij}=g\left(rac{\partial}{\partial x^i},rac{\partial}{\partial x^j}
ight), \quad i,j=1,\cdots n.$$

Then $(g_{ij})_{n \times n}$ is a symmetric positive-definite matrix-valued smooth function.

Definition: smooth and pointwise smooth curve. Let $\gamma:[a,b]\to\mathcal{M}$. γ is a smooth curve on \mathcal{M} if $\gamma=\tilde{\gamma}\big|_{[a,b]}$ for some $\tilde{\gamma}\in C^\infty((a-\varepsilon,b+\varepsilon);\mathcal{M}),\varepsilon>0$.

Let $\gamma:[a,b] o \mathcal{M}$ be continuous. γ is called a pointwise smooth curve on \mathcal{M} is there exists a partition

$$a = a_0 < a_1 < \cdots < a_N = b$$

such that $\gammaig|_{[a_i,a_{i+1}]}$ is smooth, $i=1,\cdots,N.$

Definition: length of a curve. Let $\gamma:[a,b] o \mathcal{M}$ be pointwise smooth. Define the length of γ by

$$L(\gamma) = L(\gamma; [a, b]) = \int_a^b |\gamma'(t)| \mathrm{d}t.$$

Suppose \mathcal{M} be connected.

Definition: metric on a Riemannian manifold. Let $p, q \in \mathcal{M}$. Define

$$d(p,q) = \inf\{L(\gamma) : \gamma \text{ pointwise smooth from } p \text{ to } q\}.$$

Then d is a metric on \mathcal{M} .

Proof. We need to show that d(p,q)>0 for $p\neq q$. Let $\gamma:[a,b]\to \mathcal{M}$ with $\gamma(a)=p,\gamma(b)=q$. Let $\varphi:B_2\to \mathcal{M}$ be a coordinate such that $\varphi^{-1}(p)=0, q\not\in\mathrm{Rg}\varphi$. Choose $c\in(a,b)$ such that

$$\gamma(c) \in \varphi(\partial B_1), \quad \gamma(t) \in \varphi(B_1), \forall t \in [a, c).$$

Write $lpha=\gammaig|_{[a,c]}$ and $lpha^i=(arphi^{-1}\circlpha)^i, i=1,\cdots,n.$ Then

$$egin{aligned} |lpha'(t)|^2 &= \left|(lpha^i)'(t)rac{\partial}{\partial x^i}
ight|_{lpha(t)} \ &= &(lpha^i)'(t)(lpha^j)'(t)g_{ij}(lpha(t)) \ &\geq &\lambda_1(lpha(t))|\left((lpha^1)',\cdots,(lpha^n)'
ight)(t)|\geq c_0^2, \end{aligned}$$

where $\lambda_1:\mathrm{Rg}arphi o\mathbb{R}$ is the smallest eigenvalue of $(g_{ij})_{n imes n},$ which has a posive infimum c_0^2 on $arphi(\overline{B}_1).$ Then

$$L(\gamma) \geq L(lpha) = \int_a^c |lpha'(t)| \mathrm{d}t \geq (c-a)c_0.$$

Hence $d(p,q) \ge (c-a)c_0 > 0$.

Integration on a Riemannian Manifold

Integration on a coordinate neighborhood. Let Ω be a coordinate neighborhood Ω with coordinate $\varphi=\varphi(x)$. Set

$$C_0(\Omega) := \{ f \in C(\Omega) : \operatorname{supp} f \text{ compact in } \Omega \}$$

and

$$V(Q) = \left(\det(g_{ij}(p))_{n imes n}
ight)^{rac{1}{2}}$$

where $Q=\{t^i rac{\partial}{\partial x^i}\big|_p: 0\leq t^i\leq 1, i=1,\cdots,n\}.$ Define

$$I_{\Omega}(f):=\int_{arphi^{-1}(\Omega)}(f\circarphi)\left(\det(g_{ij})_{n imes n}
ight)^{rac{1}{2}}\circarphi.$$

The integral $I_{\Omega}(f)$ is independent of the coordinate $\varphi=\varphi(x)$.

Proof. Suppose there is another coordinate $\psi = \psi(y)$ on Ω . Write

$$ilde{g}_{kl}=g\left(rac{\partial}{\partial y^k},rac{\partial}{\partial y^l}
ight),\quad k,l=1,\cdots,n.$$

Since

$$rac{\partial}{\partial x^i} = rac{\partial (\psi^{-1})^k}{\partial x^i} rac{\partial}{\partial y^k},$$

we have

$$g_{ij} = rac{\partial (\psi^{-1})^k}{\partial x^i} rac{\partial (\psi^{-1})^l}{\partial x^j} ilde{g}_{kl}, \quad i,j=1,\cdots,n.$$

Hence

$$(g_{ij}) =
abla(\psi^{-1})^T (ilde{g}_{kl})
abla(\psi^{-1}),$$

where
$$abla(\psi^{-1})=(rac{\partial (\psi^{-1})^i}{\partial x^j})=
abla(\psi^{-1}\circ arphi)\circ arphi^{-1}.$$
 Thus

$$(\det(g_{ij}))^{\frac{1}{2}} = |\det \nabla(\psi^{-1})| (\det(g_{kl}))^{\frac{1}{2}}.$$

Then by computation, we get

$$egin{split} &\int_{\psi^{-1}(\Omega)}(f\circ\psi)(\det(ilde{g}_{kl}))^{rac{1}{2}}\circ\psi\ &=\int_{arphi^{-1}(\Omega)}(f\circarphi)(\det(ilde{g}_{kl}))^{rac{1}{2}}\circarphi|\det
abla(\psi^{-1}\circarphi)|\ &=\int_{arphi^{-1}(\Omega)}(f\circarphi)\left(\det(g_{ij})_{n imes n}
ight)^{rac{1}{2}}\circarphi. \end{split}$$

Integral of continuous functions with compact support. Suppose $f \in C_0(\mathcal{M})$. Then there exist $\xi_1, \cdots, \xi_N \in C_0^\infty(\mathcal{M}; [0,1])$ and coordinate neighborhood $\Omega_1, \cdots, \Omega_N$ such that $\operatorname{supp} \xi_i \subset \Omega_i, \forall i$ and $\sum_{i=1}^N \xi_i = 1$ on $\operatorname{supp} f$. Define

$$I(f) = \sum_{i=1}^N I_{\Omega_i}(\xi_i f).$$

It is easy to see that I(f) is independent of the choose of ξ_i and Ω_i .

Integral of general functions on \mathcal{M} . Since $I:C_0(\mathcal{M})\to\mathbb{R}$ is a non-negative linear functional, by Riesz Representation Theorem, there exists a unique regular Borel measure V (called the volume measure) such that

$$I(f) = \int_{\mathcal{M}} f \mathrm{d}V, \quad orall f \in C_0(\mathcal{M}).$$

Connections

Affine Connections

Definition: Affine connections. Let \mathcal{M} be a smooth manifold. $D: \mathcal{V}(\mathcal{M}) \times \mathcal{V}(\mathcal{M}) \to \mathcal{V}(\mathcal{M})$ such that for $\forall f, g \in C^{\infty}(\mathcal{M}), X, Y, Z \in \mathcal{V}(\mathcal{M})$, we have

(i)
$$D_X(Y+Z) = D_XY + D_XZ$$
,

(ii)
$$D_X(fY) = (Xf)Y + fD_XY$$
,

(iii)
$$D_{fX+gY}Z=fD_XZ+gD_YZ.$$

Then we call D an affine connection on \mathcal{M} .

Proposition. Every manifold has affine connections.

Proof. Choose a partition of unity $\{\zeta_k\}_{k=1}^{\infty}$, each $\mathrm{supp}\zeta_k$ contained in a coordinate neighborhood Ω_k . Let $\varphi_k=\varphi_k(x)$ be a coordinate on Ω_k . Define $D^k:\mathcal{V}(\Omega_k)\times\mathcal{V}(\Omega_k)\to\mathcal{V}(\Omega_k)$ by

$$D_X^kY(p)=\langle X(p),Y^i
angle rac{\partial}{\partial x^i}(p),\quad p\in\Omega_k, X,Y\in\mathcal{V}(\Omega_k).$$

Then D_k is an affine connection on $\Omega_k.$ Define $D:\mathcal{V}(\mathcal{M}) imes\mathcal{V}(\mathcal{M}) o\mathcal{V}(\mathcal{M})$ by

$$D_XY = \sum_{k=1}^\infty D_X^k(\zeta_kY), \quad X,Y \in \mathcal{V}(\mathcal{M}).$$

Then D is an affine connection on \mathcal{M} .

 $\begin{array}{ll} \textbf{Proposition.} \ \mathsf{Let} \ X, \tilde{X}, Y, \tilde{Y} \in \mathcal{V}(\mathcal{M}), p \in \mathcal{M}. \\ \text{(i)} \ X(p) = \tilde{X}(p) \implies D_X Y(p) = D_{\tilde{X}} Y(p). \\ \text{(ii)} \ Y \equiv \tilde{Y} \ \mathsf{near} \ p \implies D_X Y(p) = D_{\tilde{X}} Y(p). \end{array}$

According to the proposition, we can define D on $\mathcal{V}(\Omega)$ where Ω is an open subset of \mathcal{M} by

$$D_vX:=D_V ilde{X}(p), \quad V\in ilde{X}\in \mathcal{V}(\mathcal{M}), V(p)=v, v\in T_p\Omega.$$

Then $D:T_p\Omega imes\mathcal{V}(\Omega) o T_p\Omega.$ And we have

$$egin{aligned} D_v(lpha X + eta Y) &= lpha D_v X + eta D_v Y, \ D_v(fX) &= \langle v, f
angle X(p) + f(p) D_v X, \ D_{lpha v + eta w} X &= lpha D_v X + eta D_w X, \end{aligned}$$

for $\forall \alpha, \beta \in \mathbb{R}, v, w \in T_p\Omega, X, Y \in \mathcal{V}(\Omega), f \in C^{\infty}(\Omega)$.

We can also define $D: \mathcal{V}(\Omega) imes \mathcal{V}(\Omega) o \mathcal{V}(\Omega)$ by

$$D_XY(p):=D_{X(p)}Y,\quad p\in\Omega.$$

Then D is an affine connection on Ω .

For a local coordinate $\varphi = \varphi(x)$, write

$$D_{rac{\partial}{\partial x^{i}}}rac{\partial}{\partial x^{j}}=\Gamma_{ij}^{k}rac{\partial}{\partial x^{k}},\quad i,j=1,\cdots,n.$$

We call Γ^k_{ij} the connection coefficients. For $X=X^i rac{\partial}{\partial x^i}, Y=Y^j rac{\partial}{\partial x^j},$ we have

$$D_XY=X^iD_{rac{\partial}{\partial x^i}}\left(Y^jrac{\partial}{\partial x^j}
ight)=\left(X^irac{\partial Y^k}{\partial x^i}+X^iY^j\Gamma^k_{ij}
ight)rac{\partial}{\partial x^k}.$$

Thus the affine connection D is locally decided by its connection coefficients Γ^k_{ij} .

Proposition. Let D be an affine connection on smooth manifold $\mathcal{M}, \gamma:(a,b)\to\mathcal{M}$ be a smooth surve such that $\gamma(t_0)=p\in\mathcal{M}, \gamma'(t_0)=v\in T_p(\mathcal{M}).$ Then for $X\in\mathcal{V}(\mathcal{M}), D_vX$ only depends on $X\circ\gamma.$

Proof.

$$egin{aligned} D_v X &= D_v (X^i rac{\partial}{\partial x^i}) = v(X^i) rac{\partial}{\partial x^i}(p) + X^i(p) D_v rac{\partial}{\partial x^i} \ &= rac{\mathrm{d}}{\mathrm{d}t} \Big|_{t_0} (X^i \circ \gamma) rac{\partial}{\partial x^i}(p) + X^i \circ \gamma(t_0) D_v rac{\partial}{\partial x^i}. \end{aligned}$$

Definition: vector field along a curve. Let $\gamma:(a,b) o \mathcal{M}$ and $X:(a,b) o T\mathcal{M}$ be smooth such that

$$X(t) \in T_{\gamma(t)}\mathcal{M}, \quad t \in (a,b).$$

Then we call X a smooth vector field along the curve γ . Let $\mathcal{V}(\gamma)$ be the set of all smooth vector fields along γ .

Examples. (i) $\gamma' \in \mathcal{V}(\gamma)$.

(ii) $X \in \mathcal{V}(\mathcal{M}) \implies X \circ \gamma \in \mathcal{V}(\gamma)$

(iii) $f\in C^\infty(a,b), p\in \mathcal{M}, v\in T_p\mathcal{M},$ define $X(t)=f(t)v, t\in (a,b).$ Then $X\in \mathcal{V}(\gamma)$ with $\gamma(t)=p, t\in \mathcal{M}$ (a,b).

Proposition. Let D be an affine connection on a smooth manifold $\mathcal M$ and $\gamma:(a,b) o\mathcal M$ be smooth. Then there

exists a unique operator $\frac{D}{dt}: \mathcal{V}(\gamma) \to \mathcal{V}(\gamma)$ satisfying (i) $\frac{D}{dt}(X+Y) = \frac{DX}{dt} + \frac{DY}{dt}, \quad \forall X, Y \in \mathcal{V}(\gamma).$ (ii) $\frac{D}{dt}(fX) = f'X + f\frac{DX}{dt}, \quad \forall f, \in C^{\infty}((a,b)), X \in \mathcal{V}(\gamma).$ (iii) If $X \in \mathcal{V}(\gamma)$ and there exists a smooth vector field \tilde{X} in a neighborhood of $p = \gamma(t_0)$ such that $\tilde{X} \circ \gamma = X$ near t_0 , then $\frac{DX}{dt}(t_0) = D_{\gamma'(t_0)}\tilde{X}$.

Remark. We often write $\frac{dX}{dt}$ instead of $\frac{DX}{dt}$.

Proof. We will prove the proposition by computation.

$$\begin{split} \frac{dX}{dt} &= \frac{d}{dt} \left(X^i \frac{\partial}{\partial x^j} \right) \\ &= \frac{dX^j}{dt} \frac{\partial}{\partial x^j} + X^j \frac{d}{dt} \frac{\partial}{\partial x^j} \\ &= \frac{dX^k}{dt} \frac{\partial}{\partial x^k} + X^j D_{\gamma'} \frac{\partial}{\partial x^j} \\ &= \frac{dX^k}{dt} \frac{\partial}{\partial x^k} + X^j (\gamma^i)' \Gamma^k_{ij} \frac{\partial}{\partial x^k} \\ &= \left(\frac{dX^k}{dt} + \Gamma^k_{ij} \frac{d\gamma^i}{dt} X^j \right) \frac{\partial}{\partial x^k}, \end{split}$$

where $X = X^i \frac{\partial}{\partial x^j}, \gamma' = (\gamma^i)' \frac{\partial}{\partial x^i}$.

Examples. (i) $\frac{d^2\gamma}{dt^2} = \left(\frac{d^2\gamma^k}{dt^2} + \Gamma^k_{ij}\frac{d\gamma^i}{dt}\frac{d\gamma^j}{dt}\right)\frac{\partial}{\partial x^k}$. (ii) $v \in T_p\mathcal{M}, \gamma(t) = p, X(t) = f(t)v \stackrel{'}{\Longrightarrow} \frac{dX}{dt} = f'v.$

Riemannian Connection

For Riemannian manifold (\mathcal{M}, g) , we write $\langle \cdot, \cdot \rangle = g(\cdot, \cdot)$.

Definition: metric connection. Let D be an affine connection on a Riemannian manifold (\mathcal{M}, g) . D is called a metric connection if

$$X\langle Y,Z
angle = \langle D_XY,Z
angle + \langle Y,D_XZ
angle, \quad orall X,Y,Z\in \mathcal{V}(\mathcal{M}).$$

Proposition. Let D be a metric connection.

(i) $v(\langle X,Y\rangle)=\langle D_vX,Y(p)\rangle+\langle X(p),D_v(Y)\rangle$ for $v\in T_p\mathcal{M},X,Y$ smooth vector fields near p. (ii) $\frac{d}{dt}\langle X,Y\rangle=\langle \frac{dX}{dt},Y\rangle+\langle X,\frac{dY}{dt}\rangle$, for $\gamma:(a,b)\to\mathcal{M}$ smooth and $X,Y\in\mathcal{V}(\gamma)$.

Proof. (i) Choose smooth vector field V near p such that V(p)=v. Then

$$egin{aligned} v(\langle X,Y
angle) &= V\langle X,Y
angle(p) \ &= \langle D_VX,Y
angle(p) + \langle X,D_VY
angle(p) \ &= \langle D_vX,Y(p)
angle + \langle X(p),D_v(Y)
angle. \end{aligned}$$

(ii)

$$\begin{split} &\frac{d}{dt} \langle \frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \rangle \\ &= \frac{d}{dt} \left(\langle \frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \rangle \circ \gamma \right) \\ &= \gamma'(t) \left(\langle \frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \rangle \right) \\ &= \langle D_{\gamma'} \frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \rangle + \langle \frac{\partial}{\partial x^i}, D_{\gamma'} \frac{\partial}{\partial x^j} \rangle \\ &= \langle \frac{d}{dt} \frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \rangle + \langle \frac{\partial}{\partial x^i}, \frac{d}{dt} \frac{\partial}{\partial x^j} \rangle \\ &\Longrightarrow \frac{d}{dt} \langle X, Y \rangle \\ &= \frac{dX^i}{dt} Y^j \langle \frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \rangle + X^i \frac{dY^j}{dt} \langle \frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \rangle + X^i Y^j \frac{d}{dt} \langle \frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \rangle \\ &= \langle \frac{dX^i}{dt} \frac{\partial}{\partial x^i}, Y \rangle + \langle X, \frac{dY^j}{dt} \frac{\partial}{\partial x^j} \rangle + \langle X^i \frac{d}{dt} \frac{\partial}{\partial x^i}, Y \rangle + \langle X, Y^j \frac{d}{dt} \frac{\partial}{\partial x^j} \rangle \\ &= \langle \frac{d}{dt} X, Y \rangle + \langle X, \frac{d}{dt} Y \rangle. \end{split}$$

Definition: symmetric connection. An affine connection D on a smooth manifold $\mathcal M$ is called symmetric if

$$D_XY - D_YX = [X, Y], \quad \forall X, Y \in \mathcal{M},$$

which is locally equivalent to $\Gamma^k_{ij} = \Gamma^k_{ji}, orall i, j, k=1,\cdots,n.$

Definition: Riemannian connection. A symmetric metric connection D on a Riemannian manifold \mathcal{M} is called Riemannian connection.

Example. The Riemannian connection on S^n is

$$abla_X Y(p) = T_p(D_{ ilde{X}} ilde{Y}(p)), \quad X,Y \in \mathcal{V}(S^n),$$

where $\tilde{X}, \tilde{Y} \in \mathcal{V}(\mathbb{R}^{n+1}), \tilde{X}\big|_{S^n} = X, \tilde{Y}\big|_{S^n} = Y, T_p(x) = x - \langle x, p \rangle p, x \in \mathbb{R}^{n+1}, p \in S^n$ be the orthogonal projection from \mathbb{R}^{n+1} to T_pS^n .

Proof. For $x\in\mathbb{R}^{n+1},y\in T_pS^n,$ we have $\langle T_px,T_py\rangle=\langle T_px,y\rangle=\langle x,y\rangle.$ Then

$$\begin{split} X\langle Y,Z\rangle &= \tilde{X}\langle \tilde{Y},\tilde{Z}\rangle = \langle D_{\tilde{X}}\tilde{Y},\tilde{Z}\rangle + \langle \tilde{Y},D_{\tilde{X}}\tilde{Z}\rangle \\ &= \langle T(D_{\tilde{X}}\tilde{Y}),Z\rangle + \langle Y,T(D_{\tilde{X}}\tilde{Z})\rangle = \langle \nabla_XY,Z\rangle + \langle Y,\nabla_XZ\rangle. \end{split}$$

For $ilde{X}= ilde{X}^irac{\partial}{\partial x^i}, ilde{Y}= ilde{Y}^irac{\partial}{\partial x^i},$ we have

$$\langle ilde{X}(p),p
angle = \langle ilde{Y}(p),p
angle = 0, \quad orall p \in S^n,$$

since $ilde{X}ig|_{S^n}=X\in \mathcal{V}(S^n), ilde{Y}ig|_{S^n}=Y\in \mathcal{V}(S^n).$ Then we claim that

$$T([\tilde{X}, \tilde{Y}]) = [X, Y].$$

For simplicity, we only prove the formula at $p=e_{n+1}$, when $T_pS^n=\mathrm{span}\{\frac{\partial}{\partial x^i}\}_{i=1}^n$. We have $T_p(x)=x-x^{n+1}e_{n+1}=(x^1,\cdots,x^n,0)$. Then $\tilde{X}^{n+1}(p)=\tilde{Y}^{n+1}(p)=0$. Thus

$$egin{aligned} T_p([ilde{X}, ilde{Y}](p)) &= T_p\left(\sum_{i,j=1}^{n+1}\left(ilde{X}^irac{\partial ilde{Y}^j}{\partial x^i} - ilde{Y}^irac{\partial ilde{X}^j}{\partial x^i}
ight)rac{\partial}{\partial x^j}
ight) \ &= \sum_{i,j=1}^n\left(X^irac{\partial Y^j}{\partial x^i} - Y^irac{\partial X^j}{\partial x^i}
ight)rac{\partial}{\partial x^j} \ &= [X,Y](p). \end{aligned}$$

Finally, we get

$$abla_X Y -
abla_Y X = T(D_{ ilde{X}} ilde{Y} - D_{ ilde{Y}} ilde{X}) = T([ilde{X}, ilde{Y}]) = [X, Y].$$

Theorem. The Riemanian connection exists uniquely, the connection coefficients of which are given by

$$\Gamma^k_{ij} = \Gamma_{ij,m} g^{mk}, \quad i,j,k \in \{1,\cdots,n\},$$

where

$$egin{aligned} \Gamma_{ij,m} &= rac{1}{2} \left(rac{\partial g_{im}}{\partial x^j} + rac{\partial g_{jm}}{\partial x^i} - rac{\partial g_{ij}}{\partial x^m}
ight), \quad i,j,m \in \{1,\cdots,n\}, \ (g^{ij})_{n imes n} &= (g_{ij})_{n imes n}^{-1}, \quad g_{ij} &= \langle rac{\partial}{\partial x^i}, rac{\partial}{\partial x^j}
angle, \quad i,j \in \{1,\cdots,n\}. \end{aligned}$$

Proof. The affine connection D given by $\Gamma^k_{ij}=\Gamma_{ij,m}g^{mk}$ is obviously symmetric since $\Gamma^k_{ij}=\Gamma^k_{ji}$. Moreover,

$$egin{aligned} X\langle Y,Z
angle \ &= X^i\partial_i\langle Y^j\partial_j,Z^k\partial_k
angle \ &= X^i(\partial_iY^jZ^k+Y^j\partial_iZ^k)g_{jk}+X^iY^jZ^k\partial_ig_{jk}, \ &\langle D_XY,Z
angle+\langle Y,D_XZ
angle \ &= (X^i\partial_iY^l+X^iY^j\Gamma^l_{ij})Z^kg_{lk}+(X^i\partial_iZ^l+X^iZ^j\Gamma^l_{ij})Y^kg_{lk}. \end{aligned}$$

Hence

$$\langle D_XY,Z
angle + \langle Y,D_XZ
angle - X\langle Y,Z
angle = X^i(Y^jZ^k+Y^kZ^j)\Gamma^l_{ij}g_{lk} - X^iY^jZ^k\partial_ig_{jk}.$$

Thus the connection is exactly a Riemannian connection. Next, we will prove the uniqueness. We claim that if a Riemannian connection D has coefficients Γ^k_{ij} , then $\Gamma^k_{ij} = \Gamma_{ij,m} g^{mk}$. Indeed,

$$egin{aligned} \partial_j g_{im} &= \partial_j \langle \partial_i, \partial_m
angle = \langle D_{\partial_j} \partial_i, \partial_m
angle + \langle \partial_i, D_{\partial_j} \partial_m
angle, \ \partial_i g_{jm} &= \langle D_{\partial_i} \partial_j, \partial_m
angle + \langle \partial_j, D_{\partial_i} \partial_m
angle, \ \partial_m g_{ij} &= \langle D_{\partial_m} \partial_i, \partial_j
angle + \langle \partial_i, D_{\partial_m} \partial_j
angle. \end{aligned}$$

Thus

$$\Gamma_{ij,m} = \langle D_{\partial_i} \partial_j, \partial_m \rangle = \Gamma_{ij}^l g_{lm} \implies \Gamma_{ij,m} g^{mk} = \Gamma_{ij}^k.$$

Example. Let $H^2=\{(x,y):x\in\mathbb{R},y>0\},g_{ij}(x,y)=y^{-2}\delta_{ij}.$ Then

$$\partial_x g_{ij} = 0, \quad \partial_y g_{ij} = -2y^{-3}\delta_{ij}.$$

Hence

$$\Gamma^k_{ij} = -y^{-1}(\delta_{im}+\delta_{2j}+\delta_{jm}\delta_{2i}-\delta_{ij}\delta_{2m})\delta_m = y^{-1}(\delta_{ij}\delta_{2k}-\delta_{jk}\delta_{2i}-\delta_{ik}\delta_{2j}).$$

Thus

$$(\Gamma^1_{ij})=y^{-1}egin{pmatrix}0&-1\-1&0\end{pmatrix},\quad (\Gamma^2_{ij})=y^{-1}egin{pmatrix}1&0\0&-1\end{pmatrix}.$$

Geodesics

Some Preliminaries

Definition: vector fields along a surface. Let \mathcal{M} be a manifold, $f=f(s,t)\in C^\infty((a,b)\times(c,d);\mathcal{M})$ is called a smooth surface on $\mathcal{M}.$ $X=X(s,t)\in C^\infty((a,b)\times(c,d);T\mathcal{M})$ is called a smooth vector field along f is $X(s,t)\in T_{f(s,t)}\mathcal{M}, \forall s\in(a,b), t\in(c,d).$

For a function F=F(s,t):A imes B o C, we write $F_s(t)=F(s,t),F_t(s)=F(s,t).$

Set

$$rac{\partial f}{\partial t} = rac{df_s}{dt}, \quad rac{\partial f}{\partial s} = rac{df_t}{ds}, \quad rac{\partial X}{\partial t} = rac{dX_s}{dt}, \quad rac{\partial X}{\partial s} = rac{dX_t}{ds}$$

are vector fields along f.

Proposition. $\frac{\partial^2 f}{\partial s \partial t} = \frac{\partial^2 f}{\partial t \partial s}$.

Proof. Write $f^i=(arphi^{-1}\circ f)^i, X=X^i\partial_i.$ Then

$$egin{aligned} rac{\partial f}{\partial s} &= rac{\partial f^i}{\partial s} \partial_i, & rac{\partial f}{\partial t} &= rac{\partial f^i}{\partial t} \partial_i, \ rac{\partial X}{\partial s} &= \left(rac{\partial X^k}{\partial s} + \Gamma^k_{ij} rac{\partial f^i}{\partial s} X^j
ight) \partial_k. \end{aligned}$$

Hence

$$rac{\partial}{\partial s}rac{\partial f}{\partial t}=\left(rac{\partial^2 f^k}{\partial s\partial t}+\Gamma^k_{ij}rac{\partial f^i}{\partial s}rac{\partial f^j}{\partial t}
ight)\partial_k=rac{\partial}{\partial t}rac{\partial f}{\partial s}.$$

Remark. From the proof above, we see that in general $\frac{\partial^2 X}{\partial s \partial t} \neq \frac{\partial^2 X}{\partial t \partial s}$.

Definition: local diffeomorphism. $Let \mathcal{M}, \mathcal{N}$ be two manifolds, $F \in C^{\infty}(\mathcal{M}; \mathcal{N})$. F is a local diffeomorphism if $\forall p \in \mathcal{M}$, there exist a neighborhood U of p and V of f(p) such that $F: U \to V$ is a diffeomorphism\dots

Remark. $F\in C^\infty(\mathcal{M};\mathcal{N})$ is a local diffeomorphism if and only if $\forall p\in\mathcal{M}, dF_p$ is bijective.

Definition: Riemannian isometry. Let \mathcal{M}, \mathcal{N} be two Riemannian manifolds, $F \in C^{\infty}(\mathcal{M}; \mathcal{N})$ be a diffeomorphism. F is called a Riemannian isometry if

$$\langle dF_p(u), dF_p(v) \rangle_{\mathcal{N}} = \langle u, v \rangle_{\mathcal{M}}, \quad \forall u, v \in T_p \mathcal{M}, p \in \mathcal{M}.$$
 (*)

Definition: local Riemmanian isometry. Let $F \in C^{\infty}(\mathcal{M}; \mathcal{N})$. F is called a local Riemannian isometry if $\forall p \in \mathcal{M}$, there exist a neighborhood U of p and V of F(p) such that $F: U \to V$ is a Riemannian isometry.

Remark. $F \in C^{\infty}(\mathcal{M}; \mathcal{N})$ is a local Riemannian isometry if F satisfies (*).

Example. $F:\mathbb{R} o\mathbb{S}^1, F(t)=e^{it}$ is a local Riemannian isometry.

Proposition. Let $F:\mathcal{M}\to\mathcal{N}$ is a local Riemannian isometry. Then (i) $L(F(\gamma))=L(\gamma)$ for any curve γ on \mathcal{M} . (ii) $d_{\mathcal{N}}(F(p),F(q))\leq d_{\mathcal{M}}(p,q), \quad \forall p,q\in\mathcal{M}.$

Geodesic and Expotential Map

Definition: geodesic. Let $\gamma:(a,b) o \mathcal{M}$ be a smooth curve. The geodesic equation is

$$\frac{d^2\gamma}{dt} = 0,$$

which is locally equivalent to

$$rac{d^2 \gamma^k}{dt^2} + \Gamma^k_{ij} rac{d \gamma^i}{dt} rac{d \gamma^j}{dt} = 0, \quad orall k = 1, \cdots, n.$$

We say a non-constant curve γ is a geodesic if γ satisfies the geodesic equation. If $\gamma \in C^{\infty}([a,b];\mathcal{M})$ can be extended to be a geodesic, we call γ a geodesic segment.

Proposition. Let γ be a geodesic.

(i) $lpha(t)=\gamma(at+b)$ with $a,b\in\mathbb{R}, a
eq 0$ is also a geodesic. (ii) $|\gamma'|\equiv {
m constant}.$

Proof. (i) Obviously. (ii) $\frac{d}{dt}|\gamma'|^2=\frac{d}{dt}\langle\gamma',\gamma'\rangle=2\langle\gamma'',\gamma'\rangle=0$.

For $v \in T\mathcal{M},$ let $\Gamma(v,\cdot) = \Gamma(v,t)$ be the unique solution of

$$egin{cases} \gamma''=0,\ \gamma'(0)=v. \end{cases}$$

Let (a_v,b_v) with $-\infty \leq a_v < b_v \leq \infty$ be the maximum domain of $\Gamma(v,\cdot)$. Then

$$\Gamma \in C^{\infty}(\Omega; \mathcal{M}), \quad \Gamma(kv,t) = \Gamma(v,kt), \quad orall v \in T\mathcal{M}, k,t \in \mathbb{R},$$

where

$$\Omega = \{(v,t): v \in T\mathcal{M}, t \in (a_v,b_v)\}$$

is an open subset of $T\mathcal{M} imes \mathbb{R}$.

Example. On the sphere $S^n,$ let $p \in S^n, v \in T_pS^n.$ Then

$$\Gamma(v,t) = (\cos|v|t)p + (\sin|v|t)\frac{v}{|v|}.$$

Definition: expotential map. Let $D=\{v\in T\mathcal{M}: 1\in (a_v,b_v)\}$ be open in $T\mathcal{M}.$ Define

$$\exp: D o \mathcal{M}, \exp(v) = \Gamma(v,1).$$

Then $\exp \in C^\infty(D;\mathcal{M})$ is called expotential map. Moreover, $\Gamma(v,t)=\exp(tv)$.

Let $D_p=D\cap T_p\mathcal{M}$ be a star-shaped neighborhood of 0_p in $T_p\mathcal{M}.$ Write

$$\exp_p(v) := \exp(v), \quad v \in T_p\mathcal{M}.$$

Then $d(\exp_p)_v: T_v D_p (=T_p \mathcal{M}) o T_{\exp_p(v)} \mathcal{M}.$ For $v=0_p,$

$$d(\exp_p)_{0_p} = I_{T_p\mathcal{M}},$$

since $d(\exp_p)_{0_p}(v) = \frac{d}{dt}\big|_0 \exp_p(tv) = v$.

Definition: geodesic neighborhood. By the inverse mapping theorem, there exists a neighborhood U of $\mathbf{0}_p$ such that

$$\exp_p:U o\exp_p(U)$$

is a diffeomorphism. We call $\exp_p(U)$ a geodesic neighborhood of p. If in addition $U=B_R(0_p)\subset T_p\mathcal{M},$ write

$$B_R(p) := \exp_p(B_R(0_p))$$

be the geodesic ball. For $r \in (0, R)$, we also write

$$S_r(p) := \exp_p(\partial B_r(0_p)),$$

and radial geodesic $\exp_p(tv), 0 \le t \le 1$ with |v| = r.

There also exists a neighborhood of p and $\delta>0$ such that $\forall q\in U,$

$$\exp_q: B_r(0_q) o \exp_q(B_r(0_q))$$

is a diffeomorphism satisfying $U\subset B_r(0_q)$. U is called total geodesic neighborhood.

Minimizing Properties

Gauss's Lemma. Let $p \in \mathcal{M}, v \in \mathrm{Dom}(\exp_n)$. Then

$$\langle d(\exp_p)_v(v), d(\exp_p)_v(w) \rangle = \langle v, w \rangle, \quad orall w \in T_p \mathcal{M}.$$

Proof. Select a smmoth curve $\alpha:(-\varepsilon,\varepsilon)\to \mathrm{Dom}(\exp_p)$ such that $\alpha(0)=v,\alpha'(0)=w$ and write $f(s,t)=\exp_p(t\alpha(s))$. Then

$$\partial_s f = d(\exp_n)_{t\alpha(s)}(t\alpha'(s)), \quad \partial_t f(s) = d(\exp_n)_{t\alpha(s)}(\alpha(s)).$$

Moreover,

$$egin{aligned} \partial_t \langle \partial_s f, \partial_t f
angle &= \langle \partial_{ts} f, \partial_t f
angle + \langle \partial_s f, \partial_t^2 f
angle \ &= \langle \partial_{st} f, \partial_t f
angle &= rac{1}{2} \partial_s \langle \partial_t f, \partial_t f
angle \ &= rac{1}{2} \partial_s \langle \partial_t f, \partial_t f
angle ig|_{t=0} &= rac{1}{2} \partial_s \langle lpha(s), lpha(s)
angle \ &= \langle lpha'(s), lpha(s)
angle. \end{aligned}$$

Hence

$$\langle \partial_s f, \partial_t f \rangle(s,t) = \langle \alpha'(s), \alpha(s) \rangle t.$$

Taking s = 0, t = 1, we get

$$\langle w,v \rangle = \langle \partial_s f(0,1), \partial_t f(0,1) \rangle = \langle d(\exp_n)_v(w), d(\exp_n)_v(v) \rangle.$$

Theorem. Let $p \in \mathcal{M}, B_R(p)$ geodesic ball, $v \in B_R(0_p) \setminus \{0_p\}, q = \exp_p(v), \alpha : [0,1] \to \mathcal{M}$ a piecewise smooth curve such that $\alpha(0) = p, \alpha(1) = q$. Then

(i) $L(\alpha) \geq |v|$.

(ii) If $L(\alpha)=|v|$ and $|\alpha'|=\mathrm{constant}$, then $\alpha(t)=\exp_n(tv), t\in[0,1]$. Hence |v|=d(p,q).

Proof. (i) Assume $\operatorname{Ran} \alpha \subset B_R(p)$ and $\alpha(t) \neq p, \forall t \in (0,1]$. Let $\beta = \exp_p^{-1} \circ \alpha$. Then $\beta(0) = 0_p, \beta(1) = v, \beta(t) \neq 0, t \in (0,1]$. Set

$$eta_{\perp}' = rac{\langle eta', eta
angle}{\langle eta, eta
angle} eta, \quad eta_{\parallel}' = eta' - eta_{\perp}', \ lpha_{\perp}' = d(\exp_p)_{eta}(eta_{\perp}'), \quad lpha_{\parallel}' = d(\exp_p)_{eta}(eta_{\parallel}').$$

Then

$$egin{aligned} lpha' &= lpha'_ot + lpha'_\|, \quad \langle lpha'_ot, lpha'_\|
angle &= 0 \ \Longrightarrow |lpha'| &= \left(|lpha'_ot|^2 + |lpha'_\||^2
ight)^{rac{1}{2}} \geq |lpha'_ot| &= |eta'_ot| = |eta|^{-1} |\langle eta', eta
angle | &= \left| \partial_t |eta|
ight| \ \Longrightarrow L(lpha) &= \int_0^1 |lpha'| dt \geq \int_0^1 |\partial_t |eta| dt \geq \int_0^1 |\partial_t |eta| dt = |v|. \end{aligned}$$

(ii) Suppose $L(\alpha)=|v|, |\alpha'|={
m constant}.$ Since $|\alpha'|=|\alpha'_{\perp}|,$ we have $\alpha'_{\parallel}=0.$ Hence $\beta'_{\parallel}=0.$ Thus $|\beta'|=|\beta'_{\perp}|=|\alpha'|=|v|.$ Hence $|\int_0^1\beta'dt|=\int_0^1|\beta'|dt=|v|.$ Write

$$e = \left| \int_0^1 |eta'| dt
ight|^{-1} \int_0^1 eta' dt = |v|^{-1} \int_0^1 eta' dt.$$

Then |e|=1. Observe that

$$\int_0^1 (|eta'| - \langle eta', e \rangle) dt = 0, \quad |eta'| - \langle eta', e
angle \geq 0.$$

Hence $|\beta'|=\langle \beta',e \rangle$. By the Cauchy-Schwartz inequality, we get $\beta' \parallel e$, which implies $\beta'=v, \beta=vt, \alpha=\exp_p\beta=\exp_p(vt)$.

Cororllary1. Let $B_R(p)$ be a geodesic ball, $0 < r < R, q \in S_r(p).$ Then d(p,q) = r.

Cororllary2. $B_R(p) = \{x \in \mathcal{M} : d(x,p) < R\}.$

Proof. For $q \in B_R(p)$, we have $q \in S_r(p)$ for some $r \in [0,R)$. Thus d(p,q) = r < R. For $q \in \mathcal{M} \setminus B_R(p)$, given $\gamma : [0,1] \to \mathcal{M}, \gamma(0) = p, \gamma(1) = q$ and $r \in (0,R)$, there exists $c \in [0,1]$, $\gamma(c) \in S_r(p)$. Then $L(\gamma) \geq L(\gamma; [0,c]) \geq d(p,\gamma(c)) = r$. Let $r \to R$, we get $L(\gamma) \geq R$. Hence $d(p,q) \geq R$.

Cororllary3. Let $\gamma:[a,b]\to\mathcal{M}$ be a non-constant piecewise smooth curve such that $|\gamma'|=\mathrm{constant}, L(\gamma)=d(\gamma(a),\gamma(b))$. Then γ is a geodesic segment.

Proof. Choose a geodesic ball $B_R(\gamma(a))$ and $r\in(0,R)$. Then there exists $c\in(a,b), \gamma(c)\in S_r(\gamma(a))$. Since $\gamma\big|_{[a,c]}$ satisfies the minimizing property, we get $\gamma\big|_{[a,c]}$ is a geodesic segment, which means $\gamma\big|_{[a,c]}$ can be extended to a geodesic $\gamma\big|_{(a-\varepsilon,a+\varepsilon)}$. Similarly we can extend γ at $\gamma(b)$ to $(b-\varepsilon,b+\varepsilon)$. Given $t\in(a,b)$, we also get γ is a geodesic in $(t,t+\varepsilon(t))$ for some $\varepsilon(t)>0$. Then

$$[a,b]\subset (a-arepsilon,a+arepsilon)\cup (b-arepsilon,b+arepsilon)\cup igcup_{t\in (a,b)}(t,t+arepsilon(t)).$$

Hence γ is a geodesic segment.

Hopf-Rinow Theorem

Theorem. Let $p \in \mathcal{M}$. Assume $\mathrm{Dom}(\exp_p) = T_p \mathcal{M}$. Then for each $q \in \mathcal{M}, d(p,q) = r > 0$, there exists $v \in T_p \mathcal{M}, |v| = 1$ such that $q = \exp_p(rv)$.

Proof. Choose $B_{2\varepsilon}(p)$ such that $q \not\in B_{2\varepsilon}(p)$. Then there exists $m \in S_{\varepsilon}(p)$ satisfying

$$d(m,q) = \inf_{x \in S_{arepsilon}(p)} d(x,q).$$

Then $m=\exp_p(\varepsilon v)$ for some $v\in T_p\mathcal{M}, |v|=1$. Set $\gamma(t)=\exp_p(tv), t\in\mathbb{R}$. We claim that $\varepsilon+d(m,q)=d(p,q)$. Indeed, for $\alpha:[0,1]\to\mathcal{M}, \alpha(0)=p,\alpha(1)=q$, we have $\alpha(s)\in S_\varepsilon(p)$ for some $s\in(0,1)$. Then

$$L(\alpha) = L(\alpha; [0,s]) + L(\alpha; [s,1]) \geq \varepsilon + d(m,q).$$

Hence $d(p,q) \geq \varepsilon + d(m,q)$. The " \leq " inequality is obvious. Set

$$T=\{t\in[0,r]:t+d(\gamma(t),q)=d(p,q)\}.$$

We have $\varepsilon \in T \neq \varnothing$. Let $t_0 = \sup T$ and assume that $t_0 < r$. By definition, $t_0 \in T$. Write $p' = \gamma(t_0)$. Repeating the procedure above, we get some $\varepsilon' > 0, m' \in S_{\varepsilon'}(p)$ such that

$$d(m',q) = \inf_{x \in S_{arepsilon'}(p')} d(x,q),$$

and $v'\in T_{p'}\mathcal{M}, |v'|=1, m'=\exp_{p'}(\varepsilon'v'), \varepsilon'+d(m',q)=d(p',q).$ Write

$$ilde{\gamma}(t) = egin{cases} \exp_p(tv), & t \in [0,t_0], \ \exp_{p'}((t-t_0)v'), & t \in (t_0,t_0+arepsilon']. \end{cases}$$

Then

$$egin{aligned} arepsilon'+d(m',q)&=d(p',q), t_0+d(p',q)=d(p,q) \ \Longrightarrow t_0+arepsilon'+d(m',q)&=d(p,q) \ \Longrightarrow L(ilde{\gamma})&=d(p,q)-d(m',q)\leq d(p,m') \ \Longrightarrow L(ilde{\gamma})&=d(p,m'). \end{aligned}$$

By Corollary 3, $\tilde{\gamma}$ is a geodesic segment, since $|\tilde{\gamma}| \equiv 1$. We get $m' = \gamma(t_0 + \varepsilon')$ and $t_0 + \varepsilon' \in T$, which is a controdiction.

Thus $r=\sup T\in T,$ and $r=d(p,q)=r+d(\gamma(r),q).$ Whence $\gamma(r)=q.$

Hopf-Rinow Theoren. Let $p \in \mathcal{M}$. Then the following are equivalent.

- (i) $\operatorname{Dom}(\exp_p) = T_p \mathcal{M}$.
- (ii) Each bounded closed subset of ${\mathcal M}$ is compact.
- (iii) $\mathcal M$ is a complete metric space.
- (iv) $\forall q \in \mathcal{M}, \mathrm{Dom}(\exp_q) = T_q \mathcal{M}.$ (geodesically complete)

Moreover, each of (i)-(iv) implies

(v) $orall q_1,q_2\in\mathcal{M},q_1
eq q_2,$ there exists some minimizing geodesic segement from q_1 to $q_2.$

Proof. (i) \Longrightarrow (ii). Since every bounded closed set is contained in some closed ball centered at p, it is sufficient to show that $\overline{B}_R(p)=\{x\in\mathcal{M}:d(x,p)\leq R\}$ is compact for each R>0. Choose $q\in B_R(p), d(p,q)=r< R$. By the previous theorem, we can find some $v\in T_p\mathcal{M}, |v|=1, \exp_p(rv)=q$. Then $q\in \exp_p(\overline{B}_R(0_p))$. Hence $B_R(p)\subset \exp_p(\overline{B}_R(0_p))$. Taking the closure, we get $\overline{B}_R(p)\subset \exp_p(\overline{B}_R(0_p))$ which is homeomorphic to a closed ball in \mathbb{R}^n . Since a closed subset of a compact set is compact, we get $\overline{B}_R(p)$ is compact.

- (ii) \Longrightarrow (iii). Obviously.
- (iii) \Longrightarrow (iv). Let $\gamma:(a,b) o \mathcal{M}$ solve the ODE

$$egin{cases} \gamma''=0,\ \gamma'(0)=v\in T_q\mathcal{M}, |v|=1. \end{cases}$$

We need to verify that $a=-\infty, b=\infty$. Assume that $b<\infty$. Then $\forall \{t_i\}\subset (a,b), t_i\to b, \{\gamma(t_i)\}$ is a Cauchy sequence since

$$d(\gamma(t_i),\gamma(t_j)) \leq |t_i-t_j|, \quad orall i,j.$$

Then $\gamma(t_i)$ converges to some $m \in \mathcal{M}$. Thus

$$\gamma(t) o m ext{ as } t o b^-.$$

Define

$$\gamma(b):=\lim_{t o b^-}\gamma(t)=m.$$

Then $\gamma:(a,b]\to\mathcal{M}$ is continuous. Choose a totally geodesic neighborhood (U,r) of $\gamma(b)$. Then for some $\varepsilon>0, \gamma([b-\varepsilon,b])\subset U$. Since U is a totally geodesic neighborhood, $U\subset B_r(\gamma(b-\varepsilon))$. There exists a unique gedesic α joint $\gamma(b-\varepsilon)$ and $\gamma(b)$. Then α extends γ , which implies $b=\infty$. Similarly we can prove $a=-\infty$. (iv) \Longrightarrow (i)(v). Obviously.

Curvature

Definition: curvature tensor. Let $\mathcal M$ be a Riemannian manifold. Define $R: ig(\mathcal V(\mathcal M)ig)^3 o \mathcal V(\mathcal M)$ by

$$R(X,Y,Z) = D_Y D_X Z - D_X D_Y Z + D_{[X,Y]} Z.$$

Then R is a 4-tensor. We call R the curvature tensor of \mathcal{M} . R is C^{∞} -linear, since

$$\begin{split} R(fX,Y,Z) &= D_Y D_{fX} Z - D_{fX} D_Y Z + D_{[fX,Y]} Z \\ &= D_Y (fD_X Z) - fD_X D_Y Z + D_{f[X,Y]-(Yf)X} Z \\ &= (Yf)D_X Z + fD_Y D_X Z - fD_X D_Y Z + fD_{[X,Y]} Z - (Yf)D_X Z \\ &= fD_Y D_X Z - fD_X D_Y Z + fD_{[X,Y]} Z = fR(X,Y,Z), \\ R(X,Y,fZ) &= D_Y D_X (fZ) - D_X D_Y (fZ) + D_{[X,Y]} (fZ) \\ &= D_Y ((Xf)Z + fD_X Z) - D_X ((Yf)Z + fD_Y Z) + ([X,Y]f)Z + fD_{[X,Y]} Z \\ &= (YXf)Z + (Xf)D_Y Z + (Yf)D_X Z + fD_Y D_X Z \\ &- (XYf)Z - (Yf)D_X Z - (Xf)D_Y Z - fD_X D_Y Z + ([X,Y]f)Z + fD_{[X,Y]} Z \\ &= fD_Y D_X Z - fD_X D_Y Z + fD_{[X,Y]} Z = fR(X,Y,Z). \end{split}$$

We also write

$$R(X,Y,Z,W) = \langle R(X,Y,Z),W \rangle \in C^{\infty}(\mathcal{M})$$

and

$$R(X,Y) = D_Y D_X - D_X D_Y + D_{[X,Y]}: \mathcal{V}(\mathcal{M})
ightarrow \mathcal{V}(\mathcal{M}).$$

Moreover,

$$R(\partial_i, \partial_j) = D_{\partial_i} D_{\partial_i} - D_{\partial_i} D_{\partial_j}.$$

Theorem.

- (i) R(X, Y, Z, W) = -R(Y, X, Z, W).
- (ii) R(X, Y, Z, W) = -R(X, Y, W, Z).
- (iii) R(X, Y, Z) + R(Z, X, Y) + R(Y, Z, X) = 0.
- (iv) R(X, Y, Z, W) = R(Z, W, X, Y).

Proof. (i) Obviously.

(ii) Observe that

$$\begin{split} R(X,Y,Z,Z) = & \langle D_Y D_X Z, Z \rangle - \langle D_X D_Y Z, Z \rangle + \langle D_{[X,Y]} Z, Z \rangle \\ = & \frac{1}{2} Y X \langle Z, Z \rangle - \langle D_X Z, D_Y Z \rangle \\ & - \frac{1}{2} X Y \langle Z, Z \rangle + \langle D_Y Z, D_X Z \rangle \\ & + \frac{1}{2} [X,Y] \langle Z, Z \rangle = 0. \end{split}$$

Thus

$$egin{aligned} 0 = & R(X,Y,Z+W,Z+W) \ = & R(X,Y,Z,Z) + R(X,Y,Z,W) + R(X,Y,W,Z) + R(X,Y,W,W) \ = & R(X,Y,Z,W) + R(X,Y,W,Z). \end{aligned}$$

$$\begin{split} &D(X,Y,Z) + D(Z,X,Y) + D(Y,Z,X) \\ = &D_Y D_X Z - D_X D_Y Z + D_{[X,Y]} Z \\ &+ D_X D_Z Y - D_Z D_X Y + D_{[Z,X]} Y \\ &+ D_Z D_Y X - D_Y D_Z X + D_{[Y,Z]} X \\ = &D_Y [X,Z] + D_X [Z,Y] + D_Z [Y,X] - D_{[Y,X]} Z - D_{[X,Z]} Y - D_{[Z,Y]} X \\ = &[Y,[X,Z]] + [X,[Z,Y]] + [Z,[Y,X]] = 0. \end{split}$$

(iv)

$$\begin{split} R(Z,W,X,Y) &= -R(W,X,Z,Y) - R(X,Z,W,Y) \\ &= R(W,X,Y,Z) + R(X,Z,Y,W) \\ &= -R(X,Y,W,Z) - R(Y,W,X,Z) - R(Z,Y,X,W) - R(Y,X,Z,W) \\ &= 2R(X,Y,Z,W) + R(Y,W,Z,X) + R(Z,Y,W,X) \\ &= 2R(X,Y,Z,W) - R(W,Z,Y,X) \\ &= 2R(X,Y,Z,W) - R(Z,W,X,Y). \end{split}$$

Notation: For $F: ig(\mathcal{V}(\mathcal{M})ig)^4 o \mathcal{V}(\mathcal{M}),$ write

$$\sigma F(X, Y, Z, W) = F(X, Y, Z, W) + F(Y, Z, X, W) + F(Z, X, Y, W).$$

Theorem.

$$D_X R(Y, Z, W) + D_Z R(X, Y, W) + D_Y R(Z, X, W) = 0,$$

where
$$D_X R(Y, Z, W) = D_X (R(Y, Z, W)) - R(D_X Y, Z, W) - R(Y, D_X Z, W) - R(Y, Z, D_X W)$$
.

Proof. Observe that

$$D_X R(Y, Z, W) = D_X (R(Y, Z)W) - R(D_X Y, Z)W - R(Y, D_X Z)W - R(Y, Z)D_X W$$

= $[D_X, R(Y, Z)]W - R(D_X Y, Z)W - R(Y, D_X Z)W$.

Then

$$\sigma D_X R(Y, Z, W) = \sigma[D_X, R(Y, Z)]W - \sigma R(Y, D_X Z)W = -\sigma R(Y, Z)D_X W.$$

Since

$$R(Y,Z) = D_Z D_Y - D_Y D_Z + D_{[Y,Z]} = [D_Z, D_Y] - D_{[Z,Y]},$$

we have

$$\sigma[D_{X},R(Y,Z)]W = \sigma[D_{X},[D_{Z},D_{Y}]]W - \sigma[D_{X},D_{[Z,Y]}]W = -\sigma[D_{X},D_{[Z,Y]}]W.$$

Moreover,

$$\begin{split} \sigma R(D_XY,Z)W + \sigma R(Y,D_XZ)W = & \sigma R(D_ZX,Y)W - \sigma R(D_XZ,Y)W \\ = & \sigma R([Z,X],Y)W \\ = & \sigma [D_Y,D_{[Z,X]}]W - \sigma D_{[Y,[Z,X]]}W \\ = & \sigma [D_Y,D_{[Z,X]}]W. \end{split}$$

Hence

 $\sigma D_X R(Y,Z,W) = -\sigma[D_X,D_{[Z,Y]}]W - \sigma[D_Y,D_{[Z,X]}]W = \sigma[D_X,D_{[Y,Z]}]W - \sigma[D_Y,D_{[Z,X]}]W = 0.$

Proposition.

$$R(\partial_i,\partial_j,\partial_k)=R_{ijk}^l\partial_l,$$

where

$$R_{ijk}^l = \partial_j \Gamma_{ik}^l - \partial_i \Gamma_{ik}^l + \Gamma_{ik}^m \Gamma_{im}^l - \Gamma_{ik}^m \Gamma_{im}^l.$$

Thus $R(\partial_i,\partial_j,\partial_k,\partial_l)=R_{ijkl}=R_{ijk}^mg_{ml}.$ By symmetric, we also have

$$R_{ijkl} = -R_{jikl}, \quad R_{ijkl} = -R_{ijlk}, \quad R_{ijkl} + R_{jkil} + R_{kijl} = 0.$$

Proof. We have

$$\begin{split} D_{\partial_j} D_{\partial_i} \, \partial_k &= & D_{\partial_j} \big(\Gamma^m_{ik} \partial_m \big) \\ &= & \partial_j \Gamma^m_{ik} \partial_m + \Gamma^m_{ik} D_{\partial_j} \partial_m \\ &= & (\partial_j \Gamma^l_{ik} + \Gamma^m_{ik} \Gamma^l_{jm}) \partial_l \,. \end{split}$$

Then the indentity holds since

$$R(\partial_i, \partial_j, \partial_k) = D_{\partial_i} D_{\partial_i} \partial_k - D_{\partial_i} D_{\partial_j} \partial_k.$$

Proposition. Let X be a smooth vector field along a smooth surface f=f(s,t). Then

$$\partial_s \partial_t X - \partial_t \partial_s X = R(\partial_t f, \partial_s f) X.$$

Proof.

$$\begin{split} \partial_t X \\ = &\partial_t (X^i \partial_i) = \partial_t X^i \partial_i + X^i \partial_t \partial_i \\ = &\partial_t X^i \partial_i + X^i D_{\partial_t f} \partial_i = \partial_t X^i \partial_i + X^i \partial_t f^j D_{\partial_j} \partial_i \\ \Longrightarrow &\partial_s \partial_t X \\ = &\partial_s \partial_t X^i \partial_i + \partial_t X^i \partial_s f^j D_{\partial_j} \partial_i + \partial_s X^i \partial_t f^j D_{\partial_j} \partial_i \\ &+ X^i \partial_s \partial_t f^j D_{\partial_j} \partial_i + X^i \partial_t f^j \partial_s f^k D_{\partial_k} D_{\partial_j} \partial_i \\ \Longrightarrow &\partial_s \partial_t X - \partial_t \partial_s X \\ = &X^i \partial_t f^j \partial_s f^k D_{\partial_k} D_{\partial_j} \partial_i - X^i \partial_s f^j \partial_t f^k D_{\partial_k} D_{\partial_j} \partial_i \\ = &X^i \partial_t f^j \partial_s f^k [D_{\partial_k}, D_{\partial_j}] \partial_i \\ = &X^i \partial_t f^j \partial_s f^k R(\partial_j, \partial_k) \partial_i \\ = &R(\partial_t f^j \partial_j, \partial_s f^k \partial_k) (X^i \partial_i) \\ = &R(\partial_t f, \partial_s f) X. \end{split}$$

Sectional Curvature

Definition: sectional curvature. Define

$$\mathrm{sec}: igcup_{p \in \mathcal{M}} (T_p \mathcal{M})^2 o \mathbb{R}, \quad \mathrm{sec}(u,v) = R(u,v,u,v), u,v \in T_p \mathcal{M}, p \in \mathcal{M}.$$

Then $\sec(u, u) = 0$, $\sec(u, v) = \sec(v, u)$, $\sec(su, tv) = s^2 t^2 \sec(u, v)$.

In this chapter, we often assume $n=\dim\mathcal{M}>1$. Otherwise $R(\cdot,\cdot,\cdot,\cdot)=0$.

Notation. Let $u,v\in T_p\mathcal{M},u\not\parallel v$. Write

$$u \wedge v = \operatorname{span}\{u,v\}, \quad |u \wedge v| = \sqrt{|u|^2|v|^2 - \langle u,v \rangle^2}.$$

Definition: sectional curvature. Let

 $\Sigma = \{ \sigma : \sigma \text{ is a 2-plane in } T_p \mathcal{M} \text{ for some } p \in \mathcal{M} \}.$

Define

$$\mathrm{sec}:\Sigma o\mathbb{R},\quad \mathrm{sec}(u\wedge v)=rac{\mathrm{sec}(u,v)}{|u\wedge v|^2}.$$

Then sec is well-defined.

Proof. Let $e_1 \wedge e_2 = u \wedge v$ with $e_1 \perp e_2, |e_1| = |e_2| = 1$ and

$$\left\{ egin{aligned} u = ae_1 + be_2, \ v = ce_1 + de_2. \end{aligned}
ight.$$

Then

$$\sec(u, v) = \sec(ae_1 + be_2, ce_1 + de_2)$$

= $(ad - bc)^2 \sec(e_1, e_2)$
= $|u \wedge v|^2 \sec(e_1, e_2)$.

The identity above, together with $|e_1 \wedge e_2| = 1$, implies that \sec is well-defined.

Theorem.

$$R(x,y,u,v) = rac{1}{6}\partial_s\partial_t \Big|_{(0,0)} \Big(\sec(x+su,y+tv) - \sec(x+sv,y+tu) \Big)$$

Proof. The identity holds since

$$egin{aligned} \partial_s \partial_t \Big|_{(0,0)} \sec(x+su,y+tv) \ = &\partial_s \partial_t \Big|_{(0,0)} R(x+su,y+tv,x+su,y+tv) \ = &R(x,y,u,v) + R(u,v,x,y) + R(x,v,u,y) + R(u,y,x,v) \ = &2R(x,y,u,v) + 2R(x,v,u,y), \ \partial_s \partial_t \Big|_{(0,0)} \sec(x+sv,y+tu) \ = &2R(x,y,v,u) + 2R(x,u,v,y) \ = &-2R(x,y,u,v) - 2R(u,v,x,y) - 2R(v,x,u,y) \ = &-4R(x,y,u,v) + 2R(x,v,u,y). \end{aligned}$$

Definition: manifold with constant sectional curvature. If $\sec(\sigma) = \kappa, \forall \sigma \in \Sigma$ for some $\kappa \in \mathbb{R}$, then we call \mathcal{M} a manifold with constant sectional curvature κ .

Theorem. \mathcal{M} is a manifolds with constant sectional curvature κ if and only if

$$R(u, v, x, y) = \kappa(\langle x, u \rangle \langle y, v \rangle - \langle x, v \rangle \langle u, y \rangle).$$

Proof. The "only if" part is obvious. We will only prove the "if" part. Indeed, by the previous theorem, we have

$$\begin{split} R(x,y,u,v) = &\frac{1}{6}\partial_s\partial_t\Big|_{(0,0)}\Big(\sec(x+su,y+tv) - \sec(x+sv,y+tu)\Big) \\ = &\frac{\kappa}{6}\partial_s\partial_t\Big|_{(0,0)}\Big(|x+su|^2|y+tv|^2 - \langle x+su,y+tv\rangle^2 \\ &-|x+sv|^2|y+tu|^2 + \langle x+sv,y+tu\rangle^2\Big) \\ = &\frac{\kappa}{6}\Big(4\langle x,u\rangle\langle y,v\rangle - 2\langle x,y\rangle\langle u,v\rangle - 2\langle x,v\rangle\langle u,y\rangle \\ &-4\langle x,v\rangle\langle y,u\rangle + 2\langle x,y\rangle\langle v,u\rangle + 2\langle x,u\rangle\langle v,y\rangle\Big) \\ = &\kappa(\langle x,u\rangle\langle y,v\rangle - \langle x,v\rangle\langle u,y\rangle). \end{split}$$

Spaces with Constant Sectional Curvature

Proposition. Let

$$f(z)=rac{az+b}{cz+d},\quad z=x+iy\in\mathbb{C},$$

where $a,b,c,d\in\mathbb{R},ad-bc=1.$ Then

- (i) $f(H^2) = H^2$.
- (ii) $f(\mathbb{R}i)$ is a line $\perp x$ -axis or a semicircle centered at some point in x-axis.
- (iii) $f:H^2 o H^2$ is a Riemannian isometry.

Proof. (i) For $w \in H^2$, choose $z = rac{dw - b}{a - cw}$. Then f(z) = w and

$$\begin{split} \operatorname{Im} z &= \frac{1}{2i} (z - \bar{z}) = \frac{1}{2i} \left(\frac{dw - b}{a - cw} - \frac{d\bar{w} - b}{a - c\bar{w}} \right) \\ &= \frac{(dw - b)(a - c\bar{w}) - (d\bar{w} - b)(a - cw)}{2i(a - cw)(a - c\bar{w})} \\ &= \frac{adw - ab - cd|w|^2 + bc\bar{w} - ad\bar{w} + ab + cd|w|^2 - bcw}{2i|a - cw|^2} \\ &= \frac{w - \bar{w}}{2i|a - cw|^2} = \frac{\operatorname{Im} w}{|a - cw|^2} > 0. \end{split}$$

(ii) By computation,

$$\mathrm{Re}z = rac{(ad+bc)\mathrm{Re}w - cd|w|^2 - ab}{|a-cw|^2}.$$

Let $\operatorname{Re} z = 0$. If cd = 0, then

$$Rew = \frac{ab}{ad + bc}.$$

If $cd \neq 0$, then

$$\left(x-rac{ad+bc}{2cd}
ight)^2+y^2=\left(rac{ad+bc}{2cd}
ight)^2-rac{ab}{cd}>0,$$

where w = x + iy.

(iii) From (i), we know that

$$\operatorname{Im} f(z) = rac{\operatorname{Im} z}{|cz + d|^2}.$$

Thus for $z\in H^2, u,v\in T_zH^2=\mathbb{C},$ we have

$$egin{aligned} df_z(u) &= f'(z)u = rac{u}{(cz+d)^2} \ \Longrightarrow & \langle df_z(u), df_z(v)
angle_{H^2} \ &= rac{1}{(ext{Im}f(z))^2} ext{Re}\left(rac{u}{(cz+d)^2}rac{ar{v}}{(car{z}+d)^2}
ight) \ &= rac{ ext{Re}(uar{v})}{(ext{Im}f(z))^2|cz+d|^4} \ &= rac{ ext{Re}(uar{v})}{(ext{Im}z)^2} = \langle u,v
angle_{H^2}. \end{aligned}$$

Theorem. Let

$$H^n = \{x = (x^1, \cdots, x^n) \in \mathbb{R}^n : x^n > 0\}$$

be the hyperbolic space with $g_{ij}(x)=(x^n)^{-2}\delta_{ij}$. Then H^n has constant sectional curvature -1.

Proof. We have

$$egin{aligned} \Gamma^k_{ij} =& rac{1}{2} (\partial_j g_{im} + \partial_i g_{jm} - \partial_m g_{ij}) g^{mk} \ =& (x^n)^{-1} (\delta_{mn} \delta_{ij} - \delta_{jn} \delta_{im} - \delta_{in} \delta_{jm}) \delta_{mk} \ =& (x^n)^{-1} (\delta_{kn} \delta_{ij} - \delta_{jn} \delta_{ik} - \delta_{in} \delta_{jk}). \end{aligned}$$

Hence

$$\begin{split} R^l_{ijk} = & \partial_j \Gamma^l_{ik} - \partial_i \Gamma^l_{jk} + \Gamma^m_{ik} \Gamma^l_{jm} - \Gamma^m_{jk} \Gamma^l_{im} \\ = & (x^n)^{-2} \Big(\delta_{in} (\delta_{ln} \delta_{jk} - \delta_{kn} \delta_{jl} - \delta_{jn} \delta_{kl}) - \delta_{jn} (\delta_{ln} \delta_{ik} - \delta_{kn} \delta_{il} - \delta_{in} \delta_{kl}) \\ & + (\delta_{mn} \delta_{ik} - \delta_{kn} \delta_{im} - \delta_{in} \delta_{km}) (\delta_{ln} \delta_{jm} - \delta_{mn} \delta_{jl} - \delta_{jn} \delta_{ml}) \\ & - (\delta_{mn} \delta_{jk} - \delta_{kn} \delta_{jm} - \delta_{jn} \delta_{km}) (\delta_{ln} \delta_{im} - \delta_{mn} \delta_{il} - \delta_{in} \delta_{ml}) \Big) \\ = & (x^n)^{-2} \Big(\delta_{in} (\delta_{ln} \delta_{jk} - \delta_{kn} \delta_{jl} - \delta_{jn} \delta_{kl}) - \delta_{jn} (\delta_{ln} \delta_{ik} - \delta_{kn} \delta_{il} - \delta_{in} \delta_{kl}) \\ & + \delta_{ik} (\delta_{ln} \delta_{jn} - \delta_{jl} - \delta_{jn} \delta_{ln}) - \delta_{kn} (\delta_{ln} \delta_{ij} - \delta_{in} \delta_{jl} - \delta_{jn} \delta_{il}) - \delta_{in} (\delta_{ln} \delta_{jk} - \delta_{kn} \delta_{jl} - \delta_{jn} \delta_{kl}) \\ & - \delta_{jk} (\delta_{ln} \delta_{in} - \delta_{il} - \delta_{in} \delta_{ln}) + \delta_{kn} (\delta_{ln} \delta_{ij} - \delta_{jn} \delta_{il} - \delta_{in} \delta_{jl}) + \delta_{jn} (\delta_{ln} \delta_{ik} - \delta_{kn} \delta_{il} - \delta_{in} \delta_{kl}) \\ = & (x^n)^{-2} (\delta_{il} \delta_{jk} - \delta_{ik} \delta_{jk}). \end{split}$$

Thus

$$R_{ijkl} = R_{ijk}^m g_{ml} = (x^n)^{-4} (\delta_{il}\delta_{jk} - \delta_{ik}\delta_{jk}).$$

Write $e_i=|\partial_i|_{H^n}^{-1}\partial_i=x^n\partial_i.$ For $\sigma\in\Sigma,$ choose $u,v\in T_xH^n$ such that

$$\sigma=u\wedge v,\quad |u|_{H^n}=|v|_{H^n}=1,\quad \langle u,v
angle_{H^n}=0,\quad u=u^ie_i,\quad v=v^ie_i.$$

Then $|u \wedge v| = 1$, and

$$\sec(\sigma) = R(u, v, u, v) = u^{i}v^{j}u^{k}v^{l}(x^{n})^{4}R_{ijkl}$$

$$= u^{i}v^{i}v^{j}u^{j} - u^{i}u^{i}v^{j}v^{j}$$

$$= \langle u, v \rangle_{H^{n}}^{2} - |u|_{H^{n}}^{2}|v|_{H^{n}}^{2} = -1.$$

Therem. S^2 has constant sectional curvature 1.

Proof. Let

$$f(\theta, \varphi) = (\sin \theta, \cos \theta \sin \varphi, \cos \theta \cos \varphi), \quad \theta \in [0, 2\pi), \varphi \in [0, \pi].$$

It is sufficient to consider the curvature at $e_3 = f(0,0)$. By computation,

$$\begin{cases} \partial_{\theta} f = (\cos \theta, -\sin \theta \sin \varphi, -\sin \theta \cos \varphi), \\ \partial_{\varphi} f = (0, \cos \theta \cos \varphi, -\cos \theta \sin \varphi) \end{cases} \implies \begin{cases} \partial_{\theta} f(0, 0) = e_1, \\ \partial_{\varphi} f(0, 0) = e_2. \end{cases}$$

Let $X=\partial_{\theta}f$. Then

$$egin{aligned} \partial_{ heta}X &= T_f(-\sin heta, -\cos heta\sinarphi, -\cos heta\cosarphi) = 0, \ \partial_{arphi}\partial_{ heta}X &= 0, \ \partial_{arphi}X &= T_f(0, -\sin heta\cosarphi, \sin heta\sinarphi) = (0, -\sin heta\cosarphi, \sin heta\sinarphi), \ \partial_{ heta}\partial_{arphi}X &= T_f(0, -\cos heta\cosarphi, \cos heta\sinarphi) = (0, -\cos heta\cosarphi, \cos heta\sinarphi). \end{aligned}$$

Thus

$$\partial_{\varphi}\partial_{\theta}X - \partial_{\theta}\partial_{\varphi}X = R(\partial_{\theta}f,\partial_{\varphi}f)X.$$

Choose $\theta = \varphi = 0$, and we get

$$e_2 = R(e_1, e_2)e_1 \implies R(e_1, e_2, e_1, e_2) = 1.$$

Since $T_{e_3}S^2$ is a linear space with dimension $2,\,S^2$ has constant sectional curvature 1 at e_3 .

Theorem. S^n has constant sectional curvature.

Proof. In the proof, we will use same notation of e_i in both \mathbb{R}^n and \mathbb{R}^{n+1} . And we only compute the curvature at e_{n+1} . Let

$$f(x) = (x, \sqrt{1 - |x|^2}), \quad x \in \mathbb{R}^n, |x| < 1.$$

Then

$$egin{aligned} \partial_i f = & \left(e_i, -x_i (1 - |x|^2)^{-rac{1}{2}}
ight), \quad \partial_i f(0) = e_i, \ \partial_j \partial_i f = & T_f \left(0, -\delta_{ij} (1 - |x|^2)^{-rac{1}{2}} - x_i x_j (1 - |x|^2)^{-rac{3}{2}}
ight) \ = & \left((\delta_{ij} + rac{x_i x_j}{1 - |x|^2}) x, -|x|^2 (\delta_{ij} (1 - |x|^2)^{-rac{1}{2}} + x_i x_j (1 - |x|^2)^{-rac{3}{2}})
ight), \ \partial_k \partial_j \partial_i f(0) = & \delta_{ij} e_k. \end{aligned}$$

Hence

$$egin{aligned} \partial_k\partial_j\partial_if - \partial_j\partial_k\partial_if &= R(\partial_jf,\partial_kf)\partial_if \ \Longrightarrow \delta_{ij}e_k - \delta_{ik}e_j &= R(e_j,e_k)e_i \ \Longrightarrow R(e_j,e_k,e_i,e_l) &= \delta_{ij}\delta_{kl} - \delta_{ik}\delta_{jl}. \end{aligned}$$

For $\sigma = u \wedge v \in \Sigma$ with $|u| = |v| = 1, u \perp v$, we have

$$egin{aligned} \sec(\sigma) = & R(u, v, u, v) = u_j v_k u_i v_l R(e_j, e_k, e_i, e_l) \ = & u_i^2 v_k^2 - u_i v_i u_j v_j = |u|^2 |v|^2 - \langle u, v \rangle^2 = 1. \end{aligned}$$

Ricci Curvature and Scalar Curvature

Trace of bilinear operator. Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space with dimension n and B a bilinear operator on V. Then there exists a unique linear operator $A:V\to V$ such that

$$B(u,v) = \langle Au, v \rangle, \quad u, v \in V.$$

Define $\operatorname{tr} B := \operatorname{tr} A$.

Let e_1, \dots, e_n be a basis of V. Write

$$g_{ij} = \langle e_i, e_j \rangle, \quad (g^{ij}) = (g_{ij})^{-1}, \quad Ae_i = A_i^j e_j, \quad B_{ij} = B(e_i, e_j).$$

Then we have

$$B_{ij} = \langle Ae_i, e_j
angle = A_i^k g_{kj} \ \Longrightarrow \ A_i^j = B_{ik} g^{kj}, \quad \operatorname{tr} B = \operatorname{tr} A = A_i^i = B_{ij} g^{ji}.$$

Given a tenser $T:\mathcal{V}(\mathcal{M}) imes\mathcal{V}(\mathcal{M}) o C^\infty(\mathcal{M}),$ define $\operatorname{tr} T:\mathcal{M} o\mathbb{R}$ by

$$\operatorname{tr} T(p) = \operatorname{trace} \operatorname{of} T: T_p \mathcal{M} imes \mathcal{M} o \mathbb{R}.$$

Then

$$\operatorname{tr} T = T_{ij} g^{ij} \in C^\infty(\mathcal{M}),$$

where $T_{ij} = T(\partial_i, \partial_j)$.

Let $T: \mathcal{V}^k(\mathcal{M}) o C^\infty(\mathcal{M})$ be a k-tensor with $k \geq 3.$ Define

$$T_{(lpha,eta)}(x_1,\cdots,\hat{x}_lpha,\cdots,\hat{x}_eta,\cdots,x_k)=\operatorname{tr} T(x_1,\cdots,x_{lpha-1},\cdot,x_{lpha+1},\cdots,x_{eta-1},\cdot,x_{eta+1},\cdots,x_k).$$

Then $T_{(lpha,eta)}$ is a (k-2)-tensor and

$$(T_{(\alpha,\beta)})_{i_1\cdots \hat{i}_{\alpha}\cdots \hat{i}_{\beta}\cdots i_k} = T_{i_1,\cdots,i_k}g^{i_{\alpha}i_{\beta}}.$$

 $R(\cdot,\cdot,\cdot,\cdot)$ is a tensor of order 4. We have

$$R_{(1,2)} = R_{(3,4)} = R_{ijkl} g^{ij} = 0, \quad R_{(2,4)} = R_{(1,3)} = -R_{(1,4)} = -R_{(2,3)}.$$

Definition: Ricci curvature. Define $\mathrm{Ric} = R_{(2,4)}$. Then $(\mathrm{Ric})_{ij} = R_{ikjl}g^{kl}$.

Let $T_p\mathcal{M}=\operatorname{span}\{e_i\}_{i=1}^n$ with $\langle e_i,e_j
angle=\delta_{ij}.$ Then

$$\mathrm{Ric}(e_i,e_j)=\mathrm{tr}\,R(e_i,\cdot,e_j,\cdot)=R(e_i,e_k,e_j,e_l)\delta_{kl}=R(e_i,e_k,e_j,e_k).$$

When n=2,

$$Ric(e_1, e_1) = R(e_1, e_2, e_1, e_2) = sec(e_1, e_2).$$

When n=3,

$$Ric(e_i, e_i) = sec(e_i, e_j) + sec(e_i, e_k), \quad \{i, j, k\} = \{1, 2, 3\}.$$

Thus Ric and sec are equivalent when $n \leq 3$.

Definition: scalar curvature. Define $\mathrm{scal} = \mathrm{tr}(\mathrm{Ric}) = (\mathrm{Ric})_{ij} g^{ij} = R_{ikjl} g^{ij} g^{kl}.$

If \mathcal{M} has constant sectional curvature κ , then

$$\operatorname{scal} = \operatorname{Ric}(e_i, e_j) \delta_{ij} = \operatorname{sec}(e_i, e_k) = n(n-1)\kappa.$$

Jacobi Field

Introduction

Definition: Jacobi field. Let $\gamma:[0,a] o\mathcal{M}$ be a geodesic, $J\in\mathcal{V}(\gamma)$. If J satisfies the Jacobi equation:

$$J'' + R(\gamma', J)\gamma' = 0,$$

we call J a Jacobi field along γ .

Proposition. Let $\gamma:[0,a] \to \mathcal{M}$ be a geodesic, $J \in \mathcal{V}(\gamma)$. Then J is a Jacobi field if and only if \exists a geodesic variation $f=f(s,t):(-\varepsilon,\varepsilon)\times[0,a] \to \mathcal{M}$ (i.e. $f_0=\gamma,\partial_t^2f=0, \forall s$) such that $J=\partial_s f\big|_{s=0}$.

Proof. The "if" part. By computation,

$$0 = \partial_s \partial_t^2 f \big|_{s=0} = \partial_t \partial_s \partial_t f \big|_{s=0} + R(\partial_t f, \partial_s f) \partial_t f \big|_{s=0}$$

= $\partial_t^2 \partial_s f \big|_{s=0} + R(\gamma', J) \gamma' = J'' + R(\gamma', J) \gamma'.$

The "only if" part. Choose $lpha:(-arepsilon,arepsilon) o\mathcal{M}$ and $X\in\mathcal{V}(lpha)$ such that

$$\alpha(0) = \gamma(0), \quad \alpha'(0) = J(0), \quad X(0) = \gamma'(0), \quad X'(0) = J'(0).$$

Let

$$f(s,t) = \exp_{\alpha(s)}(tX(s)), \quad K(t) = \partial_s f(0,t).$$

Then

$$K(0) = \partial_s \big|_{s=0} f(s,0) = \partial_s \big|_{s=0} \alpha(s) = \alpha'(0) = J(0),$$

 $K'(0) = \partial_t \partial_s f(0,0) = \partial_s \partial_t f(0,0) = X'(0) = J'(0).$

Thus J=K.

For $\gamma(0)=p,v,w\in T_p\mathcal{M},$ consider the ODE

$$\left\{ egin{aligned} J''+R(\gamma',J)\gamma'=0,\ J(0)=v,J'(0)=w. \end{aligned}
ight.$$

Let \mathscr{J} be the set of all Jacobi fields with initial value in $T_p\mathcal{M} imes T_p\mathcal{M}$ and write

$$S:T_p\mathcal{M} imes T_p\mathcal{M} o\mathscr{J},\quad S(v,w)=J.$$

Then S is a isomorphism and $\dim \mathscr{J} = 2n$. We also write

$$\mathscr{J}^{\perp} = \{J \in \mathscr{J}: J(t) \perp \gamma'(t), orall t \in [0,a]\}.$$

Proposition. Let $J\in\mathscr{J}$. Then $J\in\mathscr{J}^{\perp}\iff J(0),J'(0)\perp\gamma'(0)$.

Proof.

$$\partial_t^2 \langle J, \gamma' \rangle = \langle J'', \gamma' \rangle = -R(\gamma', J, \gamma', \gamma') = 0$$

$$\Longrightarrow \langle J, \gamma' \rangle = \langle J'(0), \gamma'(0) \rangle t + \langle J(0), \gamma'(0) \rangle.$$

Proposition. $\mathscr{J}=\mathscr{J}^\perp\oplus\operatorname{span}\{\gamma',t\gamma'\}.$

Proof. Observe that $\gamma' \not\parallel t\gamma', \gamma', t\gamma' \perp \not J^\perp$ and

$$\dim \mathscr{J}^\perp = \dim\{J\in \mathscr{J}: J(0), J'(0)\perp \gamma'(0)\} = 2n-2.$$

Theorem. Let $\gamma:[0,a]\to\mathcal{M}$ be a geodesic with $\gamma(0)=p,\gamma'(0)=v,|v|=1,J$ a Jacobi field along γ with $J(0)=0,J'(0)=w,|w|=1,w\perp v.$ Then

$$|J(t)|=t-rac{1}{6}\sec(v,w)t^3+o(t^3)\quad ext{as }t o 0.$$

Proof. By computation,

$$\begin{split} \partial_t \big|_{t=0} |J|^2 = & 2\langle J'(0), J(0)\rangle = 0, \\ \partial_t^2 \big|_{t=0} |J|^2 = & 2\langle J''(0), J(0)\rangle + 2|J'(0)|^2 = 2, \\ \partial_t^3 \big|_{t=0} |J|^2 = & 2\langle J'''(0), J(0)\rangle + 6\langle J''(0), J'(0)\rangle = -6R(\gamma'(0), J(0), \gamma'(0), J'(0)) = 0, \\ \partial_t^4 \big|_{t=0} |J|^2 = & 2\langle J''''(0), J(0)\rangle + 8\langle J'''(0), J'(0)\rangle + 6|J''(0)|^2 = 8\langle J'''(0), J'(0)\rangle \\ = & -8\langle \partial_t \big|_{t=0} R(\gamma', J, \gamma'), w\rangle = -8\langle \partial_t \big|_{t=0} \left(J^i R(\gamma', \partial_i, \gamma') \right), w\rangle \\ = & -8\langle (J^i)' R(\gamma', \partial_i, \gamma') \big|_{t=0}, w\rangle = -8\langle R(\gamma', J', \gamma') \big|_{t=0}, w\rangle \\ = & -8R(v, w, v, w) = -8\sec(v, w). \end{split}$$

Hence

$$|J(t)|^2 = t - rac{1}{3}\sec(v,w)t^4 + o(t^4) = \left(t - rac{1}{6}\sec(v,w)t^3 + o(t^3)
ight)^2 \quad ext{as } t o 0.$$

Conjugate Points

Definition: conjugate points. Let $\gamma:[0,a]\to\mathcal{M}$ be a geodesic with $p=\gamma(0), q=\gamma(t_0)$ for some $t_0\in(0,a]$. If $\exists~J\in\mathscr{J}\setminus\{0\}$ with $J(0)=0,J(t_0)=0$, we say q is a conjugate point of p.

Example. In $S^2, \, -p$ is a conjugate point of $p \in S^2.$

Proof. It is sufficient to consider the case when $p=e_3$. Let

$$f(s,t) = (\sin s \sin t, \cos s \sin t, \cos t), \quad \gamma = f_0.$$

Then $e_3=\gamma(0), -e_3=\gamma(\pi)$ and f is a geodesic variation. Let $J=\partial_s\big|_{s=0}f$ be a Jacobi field. Then

$$J(t) = (\sin t, 0, 0) \implies J(0) = 0, J(\pi) = 0.$$

Let

$$\mathscr{J}_0 = \{J \in \mathscr{J} : J(0) = 0\} = S(\{0\} \times T_p \mathcal{M}), \ \mathscr{J}_{0,0} = \{J \in \mathscr{J} : J(0) = 0, J(t_0) = 0\}.$$

Then q is a conjugate point of $p\iff \dim\mathscr{J}_{0,0}>0$. Thus we define

$$\operatorname{mul} q = \dim \mathscr{J}_{0,0} < n,$$

since $t\gamma' \in \mathscr{J}_0 \setminus \mathscr{J}_{0,0}$.

Definition: critical point. Let $f \in C^{\infty}(\mathcal{M}_1; \mathcal{M}_2), m_1 \in \mathcal{M}_1$. If df_{m_1} is not surjective, then we call q a critical point of f.

When $\dim \mathcal{M}_1 = \dim \mathcal{M}_2, q$ is a critical point of $f \iff df_{m_1}$ is not injective $\iff \dim \ker(df_{m_1}) > 0.$

Since γ is a geodesic, $\gamma(t)=\exp_p(t\gamma'(0))$ and $q=\exp_p(v_0)$, where $v_0=t_0\gamma'(0)$.

Proposition. q is a conjugate point of $p \iff v_0$ is a critical point of \exp_p . In this case, $\operatorname{mul} q = \dim \ker d(\exp_p)_{v_0}$.

Proof. We claim that if $J \in \mathscr{J}_0$,

$$J(t) = \partial_s \big|_{s=0} \exp_p t(\gamma'(0) + sJ'(0)) = td(\exp_p)_{t\gamma'(0)}(J'(0)).$$

Let $f(s,t) = \exp_p t(\gamma'(0) + sJ'(0)).$ Then $f_0 = \gamma, f_s'' = 0, orall s.$ Moreover,

$$\begin{split} \partial_s\big|_{s=0} \exp_p t(\gamma'(0) + sJ'(0))\big|_{t=0} &= 0 = J(0), \\ \partial_t \partial_s\big|_{s=0} \exp_p t(\gamma'(0) + sJ'(0))\big|_{t=0} &= \partial_s\big|_{s=0} \partial_t\big|_{s=0} \exp_p t(\gamma'(0) + sJ'(0)) \\ &= \partial_s\big|_{s=0} (\gamma'(0) + sJ'(0)) = J'(0). \end{split}$$

Hence we prove the claim. Then

$$J \in \mathscr{J}_{0,0} \iff J'(0) \in \ker d(\exp_p)_{v_0}$$
.

Thus

$$\mathscr{J}_{0,0} = S(\{0\} imes \ker d(\exp_p)_{v_0}).$$

Then the proof is finished.

Jacobi Fields on a Manifold with Constant Sectional Curvature

Definition: parallel vector field. Let $\alpha:[a,b]\to\mathcal{M}$ be a smooth curve, $X\in\mathcal{V}(\alpha)$. If

$$\partial_t X \equiv 0$$
,

we say X is a parallel vector field along α . Set

$$\mathscr{X}=\{X\in\mathcal{V}(\alpha):\partial_tX\equiv0\}.$$

Then for $X,Y\in\mathscr{X},\langle X,Y\rangle\equiv\mathrm{constant}.$

Definition: geodesic frame. Let $\gamma:[0,a]\to\mathcal{M}$ is a geodesic with $\gamma(0)=p$. Let $T_p\mathcal{M}=\mathrm{span}\{e_i\}_{i=1}^n$ with $\langle e_i,e_j\rangle=\delta_{ij}$. And let E_i be the parallel vector field along γ with $E_i(0)=e_i$. Then

$$\langle E_i(t), E_j(t)
angle = \delta_{ij}, \quad T_{\gamma(t)}\mathcal{M} = \operatorname{span}\{E_i(t)\}_{i=1}^n, \quad orall t \in [0,a].$$

Then $\{E_i\}_{i=1}^n$ is called a geodesic frame.

Let $\mathcal M$ be a Riemannian manifold with constant sectional curvature $\kappa,\gamma:[0,a] o\mathcal M$ be a geodesic with $\gamma(0)=p,|\gamma'|=1.$ Then

$$R(X,Y,Z,W) = \kappa(\langle X,Z \rangle \langle Y,W \rangle - \langle X,W \rangle \langle Y,Z \rangle)$$

 $\Longrightarrow R(X,Y)Z = \kappa(\langle X,Z \rangle Y - \langle Y,Z \rangle X).$

Choose a geodesic frame $\{E_i\}_{i=1}^n$ along γ such that $E_n(0)=\gamma'(0)$. Then $E_n=\gamma'$. For $J\in\mathscr{J}$, write $J=\alpha_iE_i$. Then

$$J''=lpha_i''E_i, \ R(\gamma',J)\gamma'=\kappa(\langle\gamma',\gamma'
angle J-\langle J,\gamma'
angle\gamma')=\kappa\sum_{i=1}^{n-1}lpha_iE_i.$$

Hence $J''+R(\gamma',J)\gamma'=0$ implies

$$lpha_i'' + \kappa lpha_i = 0, \quad i = 1, \cdots, n-1, \quad lpha_n'' = 0.$$

Then

$$J(t) = egin{cases} \sum_{i=1}^{n-1} \left(a_i rac{\sin(\sqrt{\kappa}t)}{\sqrt{\kappa}} + b_i \cos(\sqrt{\kappa}t)
ight) E_i + (a_nt+b_n) E_n, & \kappa > 0, \ \sum_{i=1}^{n} (a_it+b_i) E_i, & \kappa = 0, \ \sum_{i=1}^{n-1} \left(a_i rac{\sinh(\sqrt{\kappa}t)}{\sqrt{\kappa}} + b_i \cosh(\sqrt{\kappa}t)
ight) E_i + (a_nt+b_n) E_n, & \kappa < 0. \end{cases}$$

When $\mathcal{M}=S^n, \gamma:[0,2\pi] o \mathcal{M}$ with $p=\gamma(0), |\gamma'|=1, q=\gamma(t_0),$ we have

$$J(t) = \sum_{i=1}^{n-1} (a_i \sin t + b_i \cos t) E_i + (a_n t + b_n) \gamma' \in \mathscr{J}.$$

Then $J \in \mathscr{J}_{0,0} \setminus \{0\} \iff$

$$b_1 = \cdots = b_n = a_n = 0, \quad t_0 = \pi.$$

Hence q is a conjugate point of p if and only if $q=\gamma(\pi)=-p$. In this case, $\operatorname{mul} q=n-1$.